Radiobiology of Plutonium Edited by BETSY J. STOVER, PH.D. Department of Pharmacology, University of North Carolina and Department of Anatomy, University of Utah WEBSTER S. S. JEE, PH.D. Department of Anatomy, University of Utah Technical Editor JEFFREY S. MONTAGUE, B.A. Department of Anatomy, University of Utah Patricia W. Durbin # PLUTONIUM IN MAN: A NEW LOOK AT THE OLD DATA The J. W. Press Department of Anatomy University of Utah/Salt Lake City/1972 # PLUTONIUM IN MAN: A NEW LOOK AT THE OLD DATA ABSTRACT: In order to determine the relationships between urinary Pu excretion and body Pu content, 18 persons (15 over the age of 45) were injected in 1945 and 1946 with tracer doses of ²³⁹Pu. The original data have been critically reviewed and re-analyzed. A few days after injection, human soft tissues (other than blood and liver) contained as much as 20% of the Pu dose. Five to 15 months after injection the average liver Pu content was 31% of the dose for three cases with presumably normal liver function. Four to 457 days after injection mean total skeletal Pu was 49% for the seven cases judged to have most nearly normal livers and skeletons. Pu is transported in blood combined with transferrin, the iron-transport protein, and is stored in the liver in association with stored iron. After being bound to transferrin, Pu partially traces the behavior of the carrier protein. The early phases of Pu transport which are apparently associated with extra-cellular fluid mixing, were prolonged in individuals with impaired circulation. Maximum urinary Pu excretion occurred before the bulk of Pu was protein-bound. Minimum urinary excretion coincided with the time of maximum Pu-transferrin binding. These observations were taken to mean that some Pu is filtered by the kidney in the form of a low-molecular- Work sponsored by the U. S. Atomic Energy Commission. 469 Division of Biology and Medicine, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 weight chelate. Urinary Pu excretion was reduced by one-half in those persons who were anemic, presumably because of their more efficient Putransferrin binding. Fecal excretion of Pu apparently represents secretion in bile and other digestive juices. Fecal excretion was reduced by one-half or more in those persons whose gastrointestinal tracts were judged not to be normally stimulated. Semilogarithmic curves of Pu disappearance from plasma and of daily Pu excretion were prepared for each individual. "Normal" human Pu plasma and excretion equations (sums of exponentials) were constructed from the mean half-times and intercepts for the individual cases. All cases were included in the mean half-times — rates were apparently not affected by the individuals' various illnesses. Only the intercepts for those persons for whom a particular function was judged to be within normal limits were included in the mean intercepts. Daily Pu excretion rates and total cumulative Pu excretion predicted from exponential equations were somewhat greater than predicted from the power functions of Langham et al., chiefly because only data from normally functioning excretory systems were included in the coefficients, but also because the fecal excretion assumed in the exponential model is higher than in other models. Turnover of Pu in bone and soft tissues, storage of Pu in liver of the dog and pig, and storage of iron in man were reviewed. At tracer levels net loss of Pu from soft tissues and bone exceeds whole-body Pu loss, indicating continuous accumulation of Pu in the liver. Average soft-tissue release half-time was estimated to be not less than 480 days, and bone surface turnover for the whole adult human skeleton was estimated to be about 5% per year. For an individual on a diet adequate in iron and with normal iron stores, this model predicts that bone and liver will contain equal amounts of Pu 15 years after exposure. #### INTRODUCTION Plutonium was recognized as potentially dangerous even when the total amount of Pu in existence was only a few milligrams.¹ If the Metallurgical Laboratory efforts were successful, enormous amounts of plutonium — hundreds of times the world supply of radium — would be produced. The urgent need for biological studies of Pu was appreciated, and these were begun as soon as Pu could be spared from essential chemical investigations. On November 4, 1943, A. H. Compton² an- nounced to the M ton pile had "tak separated,3 and th at Berkeley receive Pu contaminations been acquired. The tracer data from a burden. If urinally its behavior in man were injected with a The power-fu Langham et al.^{19, 2} several occupations dicting Pu body correanalyzed many ti and analytical chen proved,^{26, 27} but the It seemed app examination of the meager as they are, Study of the behavi Pu metabolism (as to predict the behavi A retrospective newer knowledge. L lower-dose dogs in th plasma has been ide The kinetics of iron, beeen worked out in the behavior of Pupig. 40-43 * The rodent traces and attempts at 1 and the tracer and group in Chicago Abrams et al.") ar of Pu. Photocopie available at cost 1 Oak Ridge, Tennes in those ient Pu- iile and ir more if to be and of human re conil cases. parently pts for within adicted d from ta from ficients, r of the r levels loss, init-tissue d bone d to be aid with contain hen the Metalof pluuld be eciated, sential nounced to the Metallurgical Laboratory Project Council that the Clinton pile had "taken off." By January 19, 1944, 0.5 g of Pu had been separated, and three weeks later, on February 8, 1944, Hamilton's group at Berkeley received 11 mg to begin tracer studies in rats. Pu contamination of Metallurgical Laboratory installations and personnel was a chronic problem, ^{5, 6} and one of the Health Division's pressing tasks was to devise a method of determining whether a Pu burden had been acquired. The first approach was analysis of Pu in urine, ⁷⁻⁹ and tracer data from rodents* were used to relate Pu in urine to the body burden. If urinalysis was to be a reliable assay for Pu, characterization of its behavior in man was essential. For this reason, 18 hospitalized persons were injected with tracer amounts of Pu in 1945 and 1946. ¹⁸ The power-function curves of human Pu excretion constructed by Langham et al.^{19, 20} used data from both the hospital patients and from several occupationally exposed persons, and provided a method of predicting Pu body content based on urinalysis. Langham's method has been reanalyzed many times.^{21–25} There have been mathematical refinements, and analytical chemical and α -particle detection techniques have been improved,^{26, 27} but the underlying assumptions are unchanged. It seemed appropriate that this anniversary volume include a reexamination of the original data, gathered nearly 25 years ago, because meager as they are, they represent nearly all our human Pu experience. Study of the behavior of Pu in each patient might reveal differences in Pu metabolism (as a result of their various illnesses) that could be used to predict the behavior of Pu in healthy persons. A retrospective study has the advantage of being able to draw on newer knowledge. Long-term excretion data are now available from the lower-dose dogs in the Utah experiment.^{25, 29} The protein that binds Pu in plasma has been identified as transferrin, the iron-transport protein.^{30–33} The kinetics of iron, the element normally carried by transferrin, have been worked out in detail.^{34–37} Now, there is also some information on the behavior of Pu in two other large animals, the sheep^{38, 39} and the pig.^{40–43} The rodent tracer studies and inhalation experiments (Hamilton et al. 10, 11) and attempts at Pu decontamination (Copp et al. 12) by the Berkeley group, and the tracer and toxicity and inhalation studies in several species by Cole's group in Chicago (Finkle et al., 12 Painter et al., 14 Brues et al., 12 Bloom's and Abrams et al. 13) are the foundation of our knowledge of the biological behavior of Pu. Photocopies of the unpublished Metallurgical Laboratory reports are available at cost from the Division of Technical Information, P. O. Box 62, Oak Ridge, Tennessee, 37830. #### MATERIALS AND METHODS The following brief description of the original data sources is included to eliminate confusion about the Berkeley and Chicago cases for which fragmentary reports have appeared more than once. Summaries of the histories of the published cases and histories of two previously unpublished cases are also included in Appendix 1. Langham et al.¹⁹ Cases HP-1 through HP-12 are described, including medical histories, injection data, hematologic data, blood chemistry, and Pu analyses of blood, urine, feces, and tissue specimens. Pu analyses of urine, feces (fecal data from Cal-1 were not included), and tissue specimens are reported for Cal-1, Chi-1, Chi-2, and Chi-3. Pu urinalyses are reported for three occupationally exposed persons. Pu radiochemical methods are reported in detail elsewhere.⁴⁴⁻⁴⁶ Russell and Nickson^{18, 47, 48} All the original data from Chi-1 and Chi-2 are contained in Ref. 47, which includes case histories, injection data, hematologic examinations, and Pu analyses of urine, feces, and tissue specimens. Ref. 48 contains the original data for Chi-3 and fragmentary data from the other two cases. (Additional information was obtained from E. R. Russell for Chi-3.) Pu radiochemical techniques can be found in Refs. 49-51. Crowley et al.⁵² Most of the information obtained from Cal-1 is included in this report, which includes a brief medical history, injection data, and Pu analyses of urine, feces, blood, and biopsy specimens. Radiochemical techniques are also included. Additional information was obtained from raw data sheets, hospital records, and death certificates. Foreman et al.⁵³ This report contains all the information from a case of occupational Pu exposure (designated herein as LASL-1).* Included
are Pu exposure history and Pu analyses of urine and autopsy specimens. Radiochemical techniques are described elsewhere.²⁶ Data from the laboratory animals were obtained from published curves and tables: dog,^{28, 29, 54-56} sheep,^{38, 39} swine⁴⁰⁻⁴³ and rat.^{10, 57, 58} B. J. Stover and D. R. Atherton kindly supplied original data for Pu excretion of individual dogs. #### RESULTS Plutonium in soft tissues Organ and tissue weights were estimated from the recorded body weight and the cal results and calculated Pu co The calcul beings is considered the beagle 22 culate from the sture swine containtravenous injections. The moven shown in Figure indicates that al (and their conttion. The equati where t is days. high-dose dogs s about the same: the Utah dogs t ing the first few the soft tissues alone) was subs of the Pu that he body, but is most of the Pu to participate in initially found in Plutonium in the The initial calculated by n samples by 10 kg yielding a calculated Since 1951, measured in all [•] Now designated as LASL-1-038 by the Los Alamos Scientific Laboratory. Unless other phatic, and i body fluids e body consists ources is inago cases for summaries of ously unpub- ribed, includod chemistry, s. Pu analyses in, and tissue Pu urinalyses andiochemical m Chi-1 and ries, injection ne, feces, and hi-3 and fragormation was echniques can from Cal-1 is tory, injection imens. Radiormation was certificates. on from a case 1).* Included osy specimens. rat. 10, 57, 58 B. 1 for Pu excre- ecorded body weight and the weight proportions of "Standard Man." ^{59, 60} The analytical results and calculated weights of tissues and organs and their total calculated Pu contents are shown in *Table I*. The calculated Pu content of the soft tissues* of the six human beings is considerably greater than the 3% reported present in soft tissues of the beagle 22 days after intravenous injection. It was possible to calculate from the data of Smith et al. that the soft tissues of yearling miniature swine contained as much as 25% of the injected dose 6 days after intravenous injection of Pu(IV) citrate. The movement of Pu out of the soft tissues of the six human cases is shown in *Figure 1*. Extrapolation of the initial steep portion of the curve indicates that about 24% of the injected Pu was present in these tissues (and their contained blood and extracellular fluid) 24 hours after injection. The equation of the exponential curve in *Figure 1* is Soft-tissue $$Pu = 8\%e^{-0.096t} + 16\%e^{-0.0014t}$$, (1) where t is days. The initial rate of Pu loss from the soft tissues of the high-dose dogs studied by Painter et al. 14 and from rats 10, 57 appears to be about the same as estimated for man. There is some indirect evidence from the Utah dogs that Pu continued to be deposited in liver and bone during the first few days after injection. Thus, the amount of Pu initially in the soft tissues of the dog (at least 20% can be accounted for in blood alone) was substantially more than the 3% measured at 22 days. 28 Most of the Pu that leaves the soft tissues of either dog or man does not leave the body, but is redistributed to the liver and skeleton. It appears that most of the Pu originally in the soft tissues of the dog is sufficiently labile to participate in this redistribution, but that nearly two-thirds of the Pu initially found in the soft tissues of man is more firmly bound. #### Plutonium in the skeleton The initial Pu content of the entire human skelcton was originally calculated by multiplying the mean Pu concentration of all the bone samples by 10 kg, the estimated average bone mass of "Standard Man", 59 yielding a calculated total skeletal Pu of 65%. Since 1951, when the human Pu cases were reported, Pu has been measured in all the individual bones of the dog, ⁵⁶ and in several bones of [•] Unless otherwise specified, soft tissue includes muscle, skin, connective, lympphatic, and nervous tissue, fat, glands, all organs except liver, blood and other body fluids except bladder urine, and gastrointestinal contents. Thus the whole bedy consists of liver, bone and soft tissue. the rat,⁶² rabbit,⁶⁸ and pig.⁴³ The results are all the same: vertebrae, ribs, and sternum — the bones sampled in the human cases — have higher initial Pu concentrations than the skeleton as a whole, which means that the total skeletal content of the human Pu cases was probably overestimated. One method of estimating skeletal Pu uses the material balance, $$Pu_{sk} = 100\% - (Pu_1 + Pu_{st} + Pu_e),$$ (2) where Pusk, P1, Pust, and Pus are the percent of injected dose in the skeleton, liver, soft tissues, and excreta, respectively. The maximum Pusk — that is, the amount of Pu left over after accounting for Pu1, Pust, and Pus of each individual human Pu case — appears in the bottom row of Table 1.* The mean Pusk for all six cases, regardless of their health status, was 55% — 10% less than was originally calculated. Some of the reasons for this change are that the following have now been accounted for: (a) excretion between the end of collections and death; (b) Pu in all soft tissues whether sampled or not; and (c) Pu remaining in the circulation of the two cases from whom tissue samples were obtained 4 to 5 days after injection. The livers of two cases were not normal. The liver of Chi-2 had been almost completely replaced by tumor. When HP-11 was injected, he was dying of hepatic failure (cirrhosis resulting from chronic alcoholism and malnutrition). If only the three cases with presumably normal livers are considered, the mean Pu₁ is 31.2%, and the mean Pu_{2k} is 47% — nearly 18% less than originally estimated.¹⁹ Total skeletal Pusk can also be estimated from (a) the concentration in individual bones, (b) the ponderal (weight) relationships between individual bones and the whole skeleton, and (c) the distributional relationships between a radionuclide in individual bones and in the entire skeleton according to the equation $$Pu_{ek} = \frac{BW \times fsk \times fb_i \times (Pu_i)}{fr_i}, \qquad (3)$$ where BW is the body weight in grams, fsk is the fraction of the body weight contributed by the skeleton, fbi is the fraction of the skeletal Pu₁ was not measured for Cal-1, so the range of Pu₁₂ shown for him uses as limits the highest and lowest measured values of Pu₁ from three other cases that were considered to have approximately normal livers. HE OLD DATA ertebrae, ribs, have higher h means that robably over- ial balance, (2) d dose in the aximum Pusk for Pui, Pust, ie bottom row Ith status, was If the reasons Inted for: (a) Pu in all soft the circulation I 4 to 5 days thi-2 had been jected, he was be sholism and mal livers are 7%—nearly concentration ps between inaonal relationentire skeleton (3) ii of the body for him uses as hree other cases Table I. (Part 1) Material balances of soft tissue and excreta. Six persons injected i.v. with Pu(IV) citrate, Pu(VI) nitrate, or Pu(VI) citrate. | nitrate, or ru(v1) cure | Hale. | | | | | | | | | |-------------------------|---|---------------------|---------|------------------|---------------------|----------|---------|--------------------|----------| | | | | | Pu | Pu(IV) Citrate | ate | | | | | | Hb | HP-5. 151 days b.i. | W. D.i. | HP-3 | HP-9: 456 days p.i. | ıs p.i. | HP- | HP-11: 5 days p.i. | p.i. | | | • | Male 56 | vr. | 7 | Male, 66 y | ٠. | ~ | sale, 68 yr | ٠ | | | | 70.8 kg | | | 63 kg | | | 70.8 kga | | | | | | Calc. | | | Calc. | | | Calc. | | Soft Tissues | %Pu/g | wt (g) | 5 | %Pu/g | wt (g) | (%) dose | %Pu/g | wt (g) | (%) dose | | | 0.039 | 1 340b | 42.8 | 0.0144 | 1,600 | 23.0 | 0.0053 | 2,325 | 12.3 | | בועכו | 2000 | 194 | 0.13 | 0.0015 | 162 | 0.24 | 0.0048 | 184 | 0.89 | | Spicen | 0.000 | 101 | 0.00 | 0000 | 777 | 0.055 | 0.0015 | 312 | 0.47 | | Kidney | 0.0002 | 312 | 0.062 | 0.0002 | //7 | 0.00 | 0.0016 | | 1 60 | | Lung | 0.0005 | 1,000 | 0.50 | | | | 0.0010 | 1,000 | 7.00 | | Dancrese | 0.0002 | 100 | 0.05 | 0.0002 | 96 | 0.018 | | | | | Tetation | 0.00015 | | 0.15 | | | | 0.00045 | 1,020 | 0.46 | | Integune | 0.000 | | 0.010 | | | | 0.0012 | 64 | 0.077 | | Testes | 0.0003 | 40 | 0.010 | | | | 0000 | 2 | 0.014 | | Thyroid | 0.0001 | 16 | 0.0016 | | | | 0.0003 | 2; | 10.0 | | Adrenals | 0.0004 | 14 | 0.0056 | | | | 0.0022 | 14 | 0.031 | | Minele | 00000 | 28 | 6.67 | 0.0002° | 25,200 | 5.92 | 0.0002 | 28,400 | 5.68 | | Muscre | 2000 | | • | | 4.410 | | 0.0002 | 4,950 | 0.99 | | Skin | *************************************** | • | 6 | 0.00014 | 99 98N | 9 93 | 0.00014 | 22,200 | 2.22 | | Residual soft tissue | 0.0001 | 23,080 | 2.31 | 0.001 | 44,400 | 7. n. | | | 2.00 | | Excreted. | | | 5.20 | | | 0.01 | | | 24.7 | | Total (accounted for) | | | 57.9 | | | 48.0 | | | 7.7. | | Cliniation (cale) | | 10 300 | 49.1 | | 9,166 | 52.0 | | 10,300 | 65.3 | | Skeleton (care.) | | 777 | • | | | | | | | Table I. (Part 2) Material balances of soft tissues and excreta. Six persons injected i.v. with Pu(IV) citrate, Pu(VI) nitrate, or Pu(VI) citrate. | | | | Pu(VI) Citrate | itrate | | | Pu(| Pu(VI) Nitrate | | |-------------------------|---|----------------------|----------------|------------------|---------------------|-----------------|------------------|--------------------|-----------------| | | | | () | - | | | | 1 1 | | | | Chi | Chi-1: 160 days p.i. | ys p.i. | C^{R} | Chi-2: 17 days p.1. | 15 p.t. | Ca | Cal-1: 4 aays p.1. | p.t. | | | ~ | Male, 68 yr. | | Fe | Female, 55 yr. | 7. | Z | Male, 58 yr. | | | | | 76.4 kg | | | 38.6 kg | | | 58 kg | | | | | | Calc. | | | Calc. | | | Calc. | | | $% \frac{\partial Pu}{\partial s} = \frac{\partial Pu}{\partial s}$ | vot (g) | (%) dose | (%) dose %Pu/g9 | wt (g) | (%) dose %Pu/go | %Pu/8° | wt (g) | wt (g) (%) dose | | Liver | 0.0135 | 2.050b | 27.8 | 0.0024 | 1,110 | 2.70 | | 1,508 | | | Spleen | 0.0025 | ,
260° | 0.65 | 0.0012 | 85
_b | 0.10 | 0.0019 | 167 | 0.32 | | Kidnev | 0.00038 | 340° | 0.12 | 0.0054 | 190° | 1.03 | | | | | Lung | 0.00058 | 1,950 | 1.13 | 0.0016 | 490° | 0.78 | | | | | Pancreas | | | | 0.0022 | 09 | 0.13 | | | | | Intestines | | | | 0.00065 | 555 | 0.36 | | | | | Testes | 0.00052 | 99 | 0.034 | | | | | | | | Thyroid | | | | 0.0034 | 14 | 0.048 | | | | | Adrenals | | | | | | | | | 0 | | Muscle | 0.00025° | 30,560 | 86.8 | 9000.0 | 11,310 | 6.79 | 0.0004° | 23,200 | 9.28 | | Skin | | 5,348 | | 0.0006° | 2,320 | 1.39 | 0.00058 | 4,550 | 2.64 | | Heart | 0.00028 | 382 | 0.11 | 0.00105 | 250 | 0.26 | | | | | Diaphragm
Lung tumor | 0.00023 | 32 | 0.054 | | | | | | | ***** 0.29 390 10 0.00074 1.16 764 0.0015 Lymph node Ovaries Omentum | 0.00023 | 0.0017 32 | |-----------|-----------| | Jiaphragm | ung tumor | | Lymph node | 0.0015 | 764 | 1.16 | | 330 | 0.29 | | | | |-----------------------|---------------|--------|------|---------|--------|------|--------------|---------|-----------------| | Ovaries | | | | 0.00094 | 10 | 0.00 | | | | | Omentum | | | | | | | 0.0004 | | | | Subcutaneous tissue | | | | | | | 0.0004 | | | | Scar tissue | | | | | | | 0.0011 | | | | Residual soft tissue | 0.00012^{4} | 23,800 | 2.98 | 0.00034 | 14,700 | 4.41 | 0.0002^{4} | 16,690 | 3.34₺ | | Blood | | | | | | | | | 5.66 | | Excreted. | | | 6.74 | | | 0.70 | | | 1.19 | | Total (accounted for) | | | 49.8 | | | 19.0 | | | 25.7 | | Skeleton (Calc.) | | 9,428 | 50.2 | | 7,1251 | 81.0 | | 9,4281 | | | | | | | | | | | (mid-ra | mid_range 42.5) | * Body weight estimated to be the mean weight of six male cases whose hody weights were recorded. Measured tissue weight. Pu concentrations in muscle and skin (when not measured) were estimated to be the average of other measured soft tissues such as heart, pancreas, etc. " Pu concentration of residual soft tissue was estimated to be one-half the concentration in skin and muscle. * Measured totals are used when available. Exerction between the cessation of collections and deaths of HP-5 and IIP-9 was estimated from extrapolation of the last available measurements and the slopes of the U and F curves of persons followed for longer times. Exercta from HP-11 were estimated to be the mean for all the other Pu(IV) citrate-injected cases. 'Includes 7.95%, the average Pu content of blood of the two sickest persons (IIP-4 and HP-10), from whom blood samples were obtained at this time. " %/g of Pu recalculated from original data. Includes 3.25% estimated from the tissues of Chi-2 and HP-11. 'Chi-2 was emaciated; her skeleton was assumed to be the average reported by Mechanik" for slightly built females. Cal-1 had lost 15 lb during his illness; his skeletal weight was calculated from his body weight in good health, 64.8 kg. Fig. 1. Pu loss from soft tissue (other than liver) after intravenous injection of Pu(IV) citrate or Pu(VI) citrate. Rat data are from Scott et al.¹⁰ and Carritt et al.⁵⁷; toxicity dogs were those of Painter et al.¹⁴; mongrel dogs injected with Pu(NO₃)₄ were those of Rysina and Erokhin⁵⁴; beagles were those of Stover et al.²⁸ LANL weight contribute (Pu_i) is the metric fraction of the state s Bone specir are shown in *T* the three Califperiosteum, mapublished whole it was necessar parts. 64 The literat skeletons from a human skeleton for the adult me skeletons of the Table I. Marci of persons who equipment, and "careful prelimi pected in the ca were multiplied to obtain estimations. Fractional greatest uncertainevaluated. Distriction in the bution in the highbour weight distriction in the radionucly skeletal distribution results compare and with ²¹¹Am Jeung, unpublished in each in the monkey si Mean ± star S.D. = [Σ(de DLD DATA 600 injection al.¹⁰ and arel dogs agles were weight contributed by the individual bone i (or a group of similar bones), (Pu_i) is the measured Pu concentration ($\frac{6}{5}$ /g) in bone i, and fr_i is the fraction of the skeletal radionuclide contributed by bone i. Bone specimens were obtained from nine cases. The analytical results are shown in *Table II*. The bone samples of the two Chicago cases and the three California cases had been subdivided into several parts, e.g., periosteum, marrow, spicules, cortex, etc. In order to make use of published whole-bone weights and intraskeletal radionuclide distributions, it was necessary to reconstruct whole-bone samples from the reported parts.⁶⁴ The literature contains records of 29 complete dissections of fresh skeletons from weighed cadavers. The best estimates of fsk for the human skeleton are $14.6 \pm 3\%$ and $11.9 \pm 1.7\%$ of the body weight for the adult male and female, respectively. The weights of the individual skeletons of the Pu cases were calculated and appear at the bottom of Table I. Marei and Borisov dissected seven male and six female cadavers of persons who died in 1967. Groups of bones were weighted on modern equipment, and drying was avoided. Their dissections included only careful preliminary removal of soft tissue, about what might be expected in the case of autopsy samples. The fb s derived from these data were multiplied by the calculated weights of the skeletons of the Pu cases to obtain estimates of the wet weight of each sampled bone or group of bones. Fractional distribution of Pu in the human skeleton introduces the greatest uncertainty into the ponderal calculation, because it has not been evaluated. Distribution of Pu in all the individual bones has been measured only in the dog. 56, 72 The use of the dog data to describe Pu distribution in the human skeleton has serious disadvantages. Differences in bone weight distribution, and presumably also the functional differences resulting from different patterns of weight bearing, are likely to be reflected in the radionuclide distributions in the skeletons of man and dog. The skeletal distribution of ²⁴¹Am has been determined in the dog, ⁷⁸ and the results compare reasonably well with those for ²⁴⁹Pu in the same species and with ²⁴¹Am in the monkey (P. W. Durbin, M. H. Williams, and N. Jeung, unpublished). At least one alkaline earth element has also been studied in each of these animals; ²²⁶Ra in the dog skeleton, ⁷² and ⁹⁶Sr in the monkey skeleton. ⁷⁴ Data were found from which it was possible to [•] Mean \pm standard deviation (S.D.). S.D. = $[\Sigma(\text{dev})^2/_{(n-1)}]^{1/2}$. Table II. Summary of Pu concentration in human bone samples (Pui) and calculation of total Pu in the sampled bones and total skeleton based on intraskeletal distribution of Ra and Sr in man, Am in monkey and Pu in dog.* | | | | | | % of Pu
keleton, b | | | |-------|--------------------|---------------------------|--------------------|-----------------|-----------------------|---------------|---------------------| | Case | Bone sampled | (Pu _i)
%/g | % of Pu
(calc.) | - | r Am
monkey | | Material
balance | | HP-5 | Vertebra | 0.0071 | 13.6 | 56 | 47 | 38 | | | | Rib (whole) | | 4.47 | 36 | 76 | 38 | | | | Sternum | 0.0050 | 0.72 | 40 | 48 | 4 0 | | | | Mean | | | 44 | 57 | 38 | 42 | | HP-9 | Vertebra | 0.0080 | 13.6 | 56 | 47 | 39 | | | | Rib (whole) | 0.0038 | 2.16 | 17 ^b | 37 | 18b | | | | Mean | | | 56 | 42 | 39 | 52 | | HP-11 | Vertebra | 0.0070 | 13.4 | 55 | 46 | 38 | | | | Rib (whole) | 0.0068 | 4.34 | 35 | 74 | 37 | | | | Sternum | 0.0096 | 1.38 | 77 | 92 | 77 | | | | Mean | | | 56 | 71 | 51 | 65 | | HP12 | Radius end | 0.0187 | 2.36° | | 103 | | | | | Patellae | 0.0109 | 0.78^{d} | | 162 | | | | | Mean | | | | 132 | | | | Chi-1 | Rib* | 0.0079 | 5.44 | 44 | 92 | 46 | | | | Sternum | 0.0047 | 0.73 | 40 | 49 | 40 | | | | Mean | | | $\overline{42}$ | 70 | 43 | 49 | | Chi-2 | Rib* | 0.0200 | 8.84 | 71 | 150 | 76 | 81 | | Cal-1 | Rib* | 0.0081 | 4.73 | 38 | 80 | 40 | | | Cal-2 | Femur ^e | 0.0436 | 12.5 | >100 | | | | | Cal-3 | Femur
(cortex)* | 0.0031 | 6.09 | 57 | | | | ^{*} See text and Refs. 72-77. calculate the (Details are tions of ²²⁰R (despite son and ²⁰Sr in actinide elen distribution prising, becaments is on s blood flow.⁷⁸ Table 1 men, based or 230 Pu in the tion (3) is material bal culating Pu distribution is The ca possibility. I during surgic after the bor formation ar when the Pi in a healing normal bone injection. The sm cortex) was deposition do exceeded 100 taken from t ture three mo If these six cases is 49 Plutonium in Serial b. Omitted from average. ^{*} Ends of radii and ulnae of adult rhesus monkeys contribute 33% of the wholebone wet weight. ⁴ Measurement of patellae separate from leg bones was made only for Sr in the monkey and represented 0.48% of the skeletal burden. ^{*} Results published for subdivided samples. Whole bone reconstructed, see Ref. 64. ^{*} The sour ples (Pu_i) leton based lety and Pu total i on^a Material i balance 42 $\overline{52}$ 65 49 81 of the wholeor Sr in the see Ref. 64. calculate the distributions of ²²⁶Ra and ⁹⁷Sr in the human skeleton. ⁷⁵⁻⁷⁷ (Details are published elsewhere. ⁶⁴) The estimates of the skeletal distributions of ²²⁶Ra and ⁹⁶Sr in man agreed well. They also agreed generally (despite some specific species differences) with the distributions of ²²⁶Ra and ⁹⁶Sr in the animals and qualitatively with the distributions of the actinide elements in the animals. The existence of a common intraskeletal distribution pattern among seemingly dissimilar elements is not too surprising, because the initial site of deposition of all the bone-seeking elements is on surfaces and initial deposition is related to vascularization and blood flow. ⁷⁸ Table II contains the solution of Equation (3) for each bone specimen, based on fr_i taken from alkaline earths in man, ²⁴¹Am in the monkey, or ²³⁹Pu in the dog.* The Pu_{sk} of each human case calculated from Equation (3) is compared in Table II with the result obtained from the material balance. The best agreement between the two methods of calculating Pu_{sk} was achieved when fr_i was based
on the alkaline earth distribution in man. The calculated Pusk was greater than 100% for HP-12, an impossibility. The bone specimens from that case were fragments removed during surgical repair of comminuted fractures. Surgery occurred 21 days after the bones were fractured and 5 days after the Pu injection. Callus formation and resorption of damaged bone were probably well under way when the Pu was injected. Van Middlesworth⁷⁹ showed that Pu uptake in a healing fracture was about four times as great as in the contralateral normal bone when partial healing had been permitted to occur before Pu injection. The small piece of femoral metaphysis from Cal-2 (designated as cortex) was evidently not normal. Even assuming uniform skeletal Pu deposition during rapid growth, the Pu_{sk} calculated from this sample also exceeded 100%. Although not stated, the biopsy specimen may have been taken from the distal femoral metaphysis, the site of a pathological fracture three months earlier. If these two cases are excluded, the mean skeletal Pu of the remaining six cases is $49 \pm 8.3\%$. Plutonium in blood after intravenous injection Serial blood samples were drawn at irregular intervals from 11 of [•] The sources of error in total skeletal isotope calculated from Eq. (3) have been examined for an ideal case." the Pu-injected individuals.¹⁹ The first sample was taken 4 hours after injection in all but one case, Chi-1.¹⁸ The longest post-injection time at which a reliable blood sample was obtained was 46 days. A semilogarithmic curve of Pu in the blood was prepared for each of the ten individuals from whom more than three blood samples were taken. Details of the construction of the blood curves appear elsewhere.⁶⁴ Individual Pu blood curves are shown in Figure 2 along with the curves for dog and sheep.* Case HP-2 was typical of the curves of most of the cases. Case HP-4 was the most unusual — rapid components were missing, and Pu remained in the blood for a much longer time. The blood curve of HP-7 is shown to demonstrate the leveling trend after the fifteenth day. In spite of the variety of their illnesses, the blood curves of these individuals revealed a common pattern. As it moves out of the circulation, Pu is evidently tracing fundamental processes that are little disturbed by the specific pathological conditions. There was an equally remarkable similarity among the different species. The individual intercepts and half-times of the components designed P₂, P₃, and P₄ (see *Table III*) were not normally distributed about their means, and it was necessary to seek some aspect of the chemical status of Pu or the physiological status of the patients (or both) that would account for these variations. Pu(IV) has been shown to combine with proteins in the plasma of the rat, ^{20, 81} dog, ^{22, 33} and man ³¹ — in particular the iron-transport protein, transferrin. The properties of transferrin and its metabolism, and the transport of iron and its release into developing red cells have been recently reviewed by Katz. ³⁵ Plasma clearance of pre-equilibrated ⁵⁹Fe-transferrin has an average half-time of 96 minutes. ^{34, 35} Once bound to transferrin, Pu(IV) appears to be released much more slowly than iron, and the mechanism of release remains to be clucidated. However, because such a large fraction of Pu(IV) introduced into the circulation in monomeric form is quickly bound to transferrin — 85% in 1 hour in the rat ⁸¹ and 96% by the seventh hour in the dog ²³ — the working hypothesis was adopted that Pu bound to transferrin traces, at least in part, the metabolism of the carrier protein. Fig. 2. Disapped data are from S McClellan et al. The Pu blood curve for the dog was constructed for the data given in Figures 1 and 2 of Stover et al. Percent Pu per ml plasma was converted to % Pu in total blood volume by using the blood volume for the beagle. Long-term data were obtained from Table 1 in Stover et al. Data for the sheep were read from Figure 3 of McClellan et al. iours after on time at \(\semilog\) semilogof the ten on. Details with the sof most sents were. The blood ar fifteenth f these inirculation, sturbed by emarkable and halfwere not seek some tus of the plasma of a-transport octabolism, cells have quilibrated nice bound owly than However, circulation 1 hour in king hypon part, the Fig. 2. Disappearance of Pu from the blood of man, dog, and sheep. Dog data are from Stover et al.²⁸, all dose levels combined; sheep data are from McClellan et al.^{35, 39} in Figures 1 d to % Fu Long-term p were read Circulation The intercepts and the half-times of the unanalyzed individual Pu blood curves are shown in Table III. In the subsequent discussions of data presented as semilogarithmic plots, the slopes of the segments of the experimental curves are presented in terms of their half-times: half-time = $0.693/\lambda$, where λ is in units of time⁻¹. Half-times of raw curves are designated as S, and half-times of the exponential equations of these curves are designated as τ . Intercepts of raw curves are designated as Λ , and the coefficients of the exponential equations as α . It can be inferred from the rapidity with which Pu initially leaves the circulation without appearing in significant amounts in the excreta or the major organs of deposition,58 that some of the Pu not promptly bound to protein moves into the extracellular fluid. Half the body transferrin and the iron bound to it are extravascular.35 The slow return of Pu to the circulation and its nearly complete protein binding after the first hour strongly suggest that some of the Pu that escapes into the extracellular fluid returns in bound form. The rates of movement of (a) unbound Pu out of the circulation and into the extracellular fluid, (b) Pu returning to the circulation bound to transferrin, and (c) Pu-transferrin into extracellular fluid35 and excreta35, 82 should all be influenced by the efficiency of the circulation. Four persons were suffering from various heart and (or) circulatory ailments, all of which are associated with increased tissue fluid retention and decreased venous return. HP-3 was edematous, and her rate of tissue fluid movement was probably depressed. The parameters of the blood Pu curves of these five cases were compared with those of the remaining five cases, whose cardiovascular systems were apparently normal for their ages. The blood volumes of those patients with circulatory impairments lost Pu more slowly;* the half times of P2 [PS2 (normal] = 12.9 ± 3.6 hour, and PS₂ (impaired) = 19.1 ± 2.5 hour] were significantly different (P = 0.01).53 Component P3 was slower in the persons with poor circulation, but the difference was not significant. No effect of #### IE OLD DATA ndividual Pu ssions of data its of the ex-: half-time = arves are dethese curves as A, and the iitially leaves he excreta or amptly bound 🖔 transferrin of Pu to the he first hour extracellular unbound Pu Pu returning n into extrathe efficiency circulatory aid retention her rate of neters of the e of the reantly normal to ulatory im-'normal] = were signifi-: the persons No effect of agesting that y circulatory e circulation crences were combined here Table III. Intercepts and half-times of unanalyzed semilogarithmic curves of Pu in human blood. Pu(IV) citrate injected | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | intravenously. | ously. | • | | | | | | | | | | | |---|----------------|-----------------|------------|-----------------|--------|----------|----------|----------|----------|--------|------|----------|-----------------| | last PA, PS, </td <td></td> <td>Day of</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>,</td> <td>č</td> <td></td> | | Day of | | | | | | | | 1 | , | č | | | sample (%) (min) (%) (hr) (%) (days) | | last | P.A. | PS, | PA, | PS_{t} | PA_s | PS_{s} |
PA_{i} | PS. | PAS | . | Circulation | | 10 100° 50° 53 18 30 2.0 2 22 100° 50° 55 16 26 1.6 5.6 7.4 3 23 100° 50° 32 22.7 22 1.8 3.5 6.0 4 23 — — 100 18.5 44 2.2 13.0 5.5 5 23 100° 50° 46 11.5 22 1.0 2.4 4.5 0.29 95 6 22 100° 50° 46 11.5 22 1.0 2.4 4.5 0.29 95 7 29 100° 50° 45 14.5 22 1.7 4.3 6.0 0.48 8 42 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 0 30 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 2 46 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 36 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 36 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 36 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 36 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 36 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 36 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 36 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 36 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 36 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 46 100° 50° 60 18.5 33 2.3 4.8 6.8 0.49 3 50° 60 18.5 5 5 5 5 5 5 6 6.0 0.44 3 60° 60 18.5 60 0.74 2.5 1.5 0.20 13 3 60° 60 18.5 60 0.74 2.5 1.5 0.20 13 3 60° 60 10.20 60 19.1 5.0 0.20 13 3 60° 60 10.20 60 10.20 60 10.20 13 3 60° 60 10.20 60 10.20 60 10.20 13 3 60° 60 10.20 60 10.20 60 10.20 13 3 60° 60 10.20 60 10.20 60 10.20 13 3 60° 60 10.20 60 10.20 60 10.20 13 3 60° 60 10.20 60 10.20 60 10.20 13 3 60° 60 10.20 60 10.20 60 10.20 13 3 60° 60 10.20 60 | Case | sample | | (min) | (%) | (hr) | (%) | (days) | (%) | (days) | (%) | (days) | status | | 2 2 100° 50° 55 16 26 1.6 5.6 7.4 3 23 100° 50° 32 22.7 22 1.8 3.5 6.0 4 23 100° 50° 43 8.5 15 0.8 1.1 6.5 0.29 95 5 23 100° 50° 46 11.5 22 1.0 2.4 4.5 0.29 95 6 22 100° 50° 45 14.5 22 1.7 4.3 6.0 0.24 8 42 100° 50° 45 14.5 22 1.7 4.3 6.0 0.24 9 36 100° 50° 45 14.5 22 1.7 4.8 6.8 0.49 9 36 100° 50° 45 14.5 3.3 2.3 4.8 6.8 0.49 100 50° 50°< | Пр | 1 | 2 | 50° | 53 | 18 | 30 | 2.0 | | | | | : | | Ob 50° 32 22.7 22 1.8 3.5 6.0 Ob 50° 43 8.5 15 0.8 1.1 6.5 Ob 50° 46 11.5 22 1.0 2.4 4.5 0.29 95 Ob 50° 46 11.5 22 1.0 2.4 4.5 0.29 95 Ob 50° 45 14.5 22 1.7 4.3 6.0 0.48 Ob 50° 50° 60 18.5 22 1.7 4.3 6.0 0.24 Ob 50° 50° 60 18.5 32 2.3 4.8 6.8 0.49 No. cases 5 5 5 5 4 2 4 2 A. A. 5.0 6.0 0.74 2.5 4 4 2 A. 5. 5 5 4 4 2 4 </td <td>6</td> <td>2 6</td> <td>100</td> <td>200</td> <td>55</td> <td>16</td> <td>56</td> <td>1.6</td> <td>5.6</td> <td>7.4</td> <td></td> <td></td> <td>Cardiac failure</td> | 6 | 2 6 | 100 | 200 | 55 | 16 | 56 | 1.6 | 5.6 | 7.4 | | | Cardiac failure | | 100 18.5 44 2.2 13.0 5.5 15.0 15.5 15.0 15.5 15.0 15.5 15.0 15.5 15.0 15.5 15.0 15.5 15.0 15.5 | 4 6 | 7 C
73 C | 100 | 50 | 32 | 22.7 | 22 | 1.8 | 3.5 | 0.9 | | | Edema" | | Ob 50b 43 8.5 15 0.8 1.1 6.5 Ob 50b 46 11.5 22 1.0 2.4 4.5 0.29 95 Ob 50b 37 20 24 2.0 3.6 6.0 0.48 Ob 50b 45 14.5 22 1.7 4.3 6.0 0.24 Ob 50b 51 12 16 2.6 6.9 6.6 0.58 Ob 50b 50b 8.3 2.3 4.8 6.8 0.49 No. cases 5 5 5 5 4 2 A.C. ases 5 5 5 4 2 A.C. ases 5 5 4 | o 4 | 23 | 3 1 | 3 | 8 | 18.5 | ‡ | 2.2 | 13.0 | . 5.5 | | | Hypertension. | | 00 50° 46 11.5 22 1.0 2.4 4.5 0.29 95 00 50° 37 20 24 2.0 3.6 6.0 0.48 00 50° 45 14.5 22 1.7 4.3 6.0 0.24 00 50° 51 12 16 2.6 6.9 6.6 0.58 00 50° 50° 51 12 16 2.6 6.9 6.6 0.58 00 50° 50° 60 18.5 33 2.3 4.8 6.8 0.49 00 50° 47.6 12.9 21 1.62 3.7 5.9 0.44 88 47.6 12.9 21 1.62 3.7 5.9 0.44 88 42 3.6 6.0 0.74 2.5 1.5 0.20 13 11, No. cases 5 5 5 5 4 4 2 26.9 2.5 9.0 0.29 4.0 0.8 0.01 | H £¢ | 2 6 | 100 | 50° | 43 | 8.5 | 15 | 0.8 | 1.1 | 6.5 | | | | | 00 50° 45 14.5 22 1.7 4.3 6.0 0.48
00 50° 45 14.5 22 1.7 4.3 6.0 0.24
00 50° 51 12 16 2.6 6.9 6.6 0.58
00 18.5 33 2.3 4.8 6.8 0.49
00 50° 50° 18.5 33 2.3 4.8 6.8 0.49
00 44 82
00 64 88
1.5 5 5 4 2
1.5 0.20 13
1.6 3 0.48
1.8 6.8 0.44 88
1.9 6.9 6.0 0.20 13
0.6 60 0.7 6 2.5 1.5 0.20 13
1.8 6.8 0.1 6.3 0.4 68
1.8 6.8 0.1 6.3 0.4 88
1.8 6.8 0.1 6.3 0.4 88
1.8 6.8 0.1 6.3 0.4 88 | י כ | 66 | 100 | 200 | 46 | 11.5 | 22 | 1.0 | 2.4 | 4.5 | 0.29 | 92 | : | | 00 50 45 14.5 22 1.7 4.3 6.0 0.24
00 50 51 12 16 2.6 6.9 6.6 0.58
00 50 60 18.5 33 2.3 4.8 6.8 0.49
00 50 60 18.5 33 2.3 4.8 6.8 0.49
00 50 60 18.5 15 5 5 4 2
0.64 82
0.64 82
0.64 82
0.64 82
0.64 82
0.64 82
0.64 82
0.64 88
47.6 12.9 21 1.62 3.7 5.9 0.44 88
4.2 3.6 6.0 0.74 2.5 1.5 0.20 13
0.8 0.01 | , c | 77
06 | 100 | 205 | 37 | 20 | 24 | 2.0 | 3.6 | 0.9 | 0.48 | | Cardiac failure | | 00 50° 50° 51 12 16 2.6 6.9 6.6 0.58
00° 50° 60 18.5 33 2.3 4.8 6.8 0.49
00° 50° 60 18.5 35 2.3 4.8 6.8 0.49
00° 40° 60 18.5 35 5 4 2
00° 40° 60 18.5 5 5 4 2
00° 40° 60 0.74 2.5 1.5 0.20 13
00° 50° 60 0.74 2.5 1.5 0.20 13
00° 60° 60° 60° 60° 60° 60° 60° 60° 60° | ~ c | 6.4 | 100 | 20.5 | 45 | 14.5 | 22 | 1.7 | 4.3 | 0.9 | 0.24 | | | | No. cases 5 5 5 5 5 5 5 4 2 n, No. cases 5 5 5 5 5 4 2 n, No. cases 5 5 5 4 2 26.9 19.1 29.8 1.98 6.1 6.3 0.48 26.9 2.5 9.0 0.29 4.0 0.8 0.01 | 0 0 | 7.F | 100 | 20.5 | 51 | 12 | 16 | 2.6 | 6.9 | 9.9 | 0.58 | | • | | No. cases 5 5 5 5 5 5 4 No. cases 5 5 5 5 5 4 47.6 12.9 21 1.62 3.7 5.9 0.44 4.2 3.6 6.0 0.74 2.5 1.5 0.20 n, No. cases 5 5 5 5 4 4 2 56.8 19.1 29.8 1.98 6.1 6.3 0.48 26.9 2.5 9.0 0.29 4.0 0.8 0.01 | υ C | 8 | 100 | 20° | 09 | 18.5 | 33 | 2.3 | 4.8 | 8.9 | 0.49 | | Cardiac failure | | No. cases 5 5 5 5 5 5 4
47.6 12.9 21 1.62 3.7 5.9 0.44
4.2 3.6 6.0 0.74 2.5 1.5 0.20
n, No. cases 5 5 5 4 4 2
56.8 19.1 29.8 1.98 6.1 6.3 0.48
26.9 2.5 9.0 0.29 4.0 0.8 0.01 | 12 | 46 | 100 | 20 ₅ | ı
I | | | ٠ | | | 0.64 | 82 | | | n, No. cases 5 5 5 6.0 0.79 4.0 6.3 0.48 56.8 19.1 29.8 1.98 6.1 6.3 0.48 26.9 2.5 9.0 0.29 4.0 0.8 0.01 | 1 | italiania | 1 20 | No case | _ | 5 | 5 | 5 | 5 | 5 | 4 | 2 | | | 1, No. cases 5 5 5 4 4 2 7 7 1.5 0.20 26.8 19.1 29.8 1.98 6.1 6.3 0.48 2 6.9 2.5 9.0 0.29 4.0 0.8 0.01 | Norman | CIICUIAU | ,
(III) | | . ' | 12.9 | 21 | 1.62 | 3.7 | 5.9 | 0.44 | 88 | | | 1, No. cases 5 5 5 4 4 4 56.8 19.1 29.8 1.98 6.1 6.3 26.9 2.5 9.0 0.29 4.0 0.8 | | | | | 4.2 | 3.6 | 0.9 | 0.74 | 2.5 | 1.5 | 0.20 | 13 | | | 56.8 19.1 29.8 1.98 6.1 6.3
26.9 2.5 9.0 0.29 4.0 0.8 | J.O. | í.
d circula | tion | | | 5 | IJ | 5 | 4 | 4 | 2 | | | | 26.9 2.5 9.0 0.29 4.0 0.8 | ompant
Vens | | , | | | 19.1 | 29.8 | 1.98 | 6.1 | 6.3 | 0.48 | | | | | HS.D | . ~ | | | 26.9 | 2.5 | 9.0 | 0.29 | 4.0 | 0.8 | 0.01 | | | 1 Fitted to 100% at t = 0, and to 66% at t = 30 min. cardiovascular disease and coronary insufficiency." "Essential hypertension with hypertensive "Hepatitis with hypoproteinemia and dependent edema." Rheumatic heart with mitral insufficiency and auricu'ar fibrillation, hospitalized for cardiac decompensation." "Cushing's syndrome with hypertension, hypertensive heart disease." The second of the second secon A five-component exponential Pu blood curve was constructed by use of the mean intercepts and half-times of those individuals who were judged to be free of debilitating heart or vascular disease. Each mean component was plotted as a straight-line segment, and the equation of the composite curve was obtained by standard graphic methods. The parameters of the equations of the human blood curve are given in *Table IV* with those of the Pu plasma or blood curves of several other species. Components P₁, P₂ and P₃ were affected by impairment of the circulation. Component P₁ (not well defined for man, half-times ranging from a few minutes to about 1 hour) seems to be associated with circulatory mixing, movement of unbound Pu into extracellular fluid, and uptake of Pu in bone and liver. Component P₂ (half-time 7 to 8 hours) seems to be related to the accumulation of Pu by bone. Iron metabolism suggests the mechanism leading to components P₃ and P₄. Component P₃ (half-time 1 to 2 days and not observed in the rat) may be related to the return of Pu-transferrin to the circulation from extracellular fluid. The last short-term component, P₄ (half-time 5 to 6 days) may be related to the destruction of the
protein portion of the Pu-transferrin complex, or to a slower component of feedback from soft tissue. The material balance of Pu in swine suggests loss of Pu from bone as an important source of plasma Pu after the first few days post injection. A long-term component, P₅, was found for the dog and pig (half-time about 230 days), and is probably related to feedback of Pu from short-lived bony structures and soft tissues. Only the dog has been observed for a long enough time to permit identification of a very slow component (half-time about 5500 days), which may be related to release of Pu from the liver as well as from slowly metabolizing portions of the skeleton. #### Renal excretion of plutonium The daily urinary excretion of each Pu-injected individual was given through the end of collections or through 138 days after Pu injection in *Table VI* of Langham et al.¹⁹ Additional excretion data for Chi-1, Chi-3, and Cal-1 through 155, 163, and 341 days, respectively, were available in the original references.^{47, 487, 52} There is a great deal of scatter in the individual data; it could be caused by incomplete collection, analytical errors, or fluctuations in the physical condition of the patients.²⁴ The best straight-line segments were drawn on semilogarithmic plots of daily urinary excretion, and the resulting curves (shown in Appendix 2) were analyzed graphically. THE OLD DATA constructed by sals who were c. Each mean quation of the ds. The paramin $Table\ IV$ c species. int of the cirtimes ranging with circulable, and uptake hours) seems tabolism sug-omponent Pabe related to ellular fluid. Pu from bone 's post injecad pig (halfi of Pu from wen observed 's component or of Pu from we skeleton. hal was given a injection in thi-1, Chi-3, available in ter in the inter in the inter, analytical in. The best lots of daily adix 2) were Table IV. Disappearance from circulating blood of intravenously injected Pu(IV) citrate. Parameters of equations of experimental plasma (or whole blood) Pu curves of rat, dog, and sheep; and of constructed blood Pu curve for a human | being wi | being with no circulation impairment. | impairm | ent. | | | | | | | | | | |--------------------|---------------------------------------|---------|--------------|------|------|------|-----------|-------------------|--------|-------|--------|-----------| | | Day of last | Pai | P_{τ_1} | Pas | Pre | Pas | P_{T_3} | $P_{T_{\bullet}}$ | | Pas | Prs | Reference | | Species | sample | (%) | (min.) | (%) | (hr) | (%) | (days) | (%) | (days) | (%) | (days) | | | Rat | 8 | 60.3 | 58 | 37.3 | 8.2 | | | 0.8 | 1 | | | 89 | | \mathbf{Dog}^{c} | r. | 45 | 3-111 | 20.5 | 7.8 | 44 | 1.7 | | | | | 14 | | Dog | 3,000 | 44 | 11-48 | 19.5 | 7.3 | 30 | 1.0 | 2.1 | 5.0 | 0.081 | 220⁴ | 28, 29 | | Sheep | 10 | 89 | 24 | 22 | 2-5 | 5.8 | 1.6 | 1:1 | 4.9 | | | 39 | | Pig | 475 | | | | | | | | | 0.50 | 230 | 40 | | Man. | 42 | 52.4 | 20 | 27.1 | 7.3 | 17.2 | 1.2 | 3.3 | 5.0 | 0.44 | 88 | | * P_{t} (%) = $\sum_{n=1}^{n} P_{n1}$ exp (-0.693t/ P_{T1}). See text and Table III. * Pu(VI) citrate, 0.05 µCi/kg. ⁴ An additional long-term component emerged at 800 days post injection. Pas = 0.045%, Pre = 5500 days". Average of two components: Pas = 0.41%, Pr. = 66 d; Pas = 0.33%, Pr. = 380 d. It is appropriate at this point to summarize what is known or can be inferred about the renal excretion of iron. Under normal physiological conditions only a tiny fraction of plasma iron exists in forms other than bound to transferrin. Urinary excretion of iron is only 0.1 mg to 0.2 mg daily equivalent to a urinary clearance of about 3% of plasma iron. The normal mechanisms of urinary iron excretion probably include (a) filtration of low-molecular-weight chelates, (b) exfoliation of kidney, bladder, or urethra cells all of which contain small amounts of iron, and (c) leakage of transferrin-bound iron through the glomerulus or tubules. Another possible source of urinary iron may arise during transferrin catabolism in the kidney. The ability of the kidney to excrete unbound iron can be inferred from the observation that 1% to 2% of injected 59 Fe-ascorbate could be found in the earliest urine samples. The amount of Pu excreted in the urine at any time should depend at least in part upon the extent of Pu-transferrin binding (or binding to other proteins) and the filterability of low-molecular-weight Pu chelates. The rates of production and destruction of transferrin, hence, the amount of transferrin circulating³⁵ and the latent binding capacity (binding sites not already occupied by iron) are related to hematopoiesis and dietary iron intake.³⁶ Both the amount and latent binding capacity of transferrin are increased following acute hemorrhage and in iron-deficient anemia, and both are reduced in hemolytic anemias, acute hepatitis, and hemochromatosis.³⁶ The extent of Pu-transferrin binding and the rate of its release also appear to be related to and affected by the status of hematopoiesis. Some individuals consistently excreted more Pu than others. In order to discover whether urinary Pu excretion could be related to physiological status, urinary Pu was summed for the earliest and latest 6-day intervals in which excreta were collected from all the patients. Medical histories were examined for information on renal function, hepatic protein synthetic capacity, and hematologic status. The influence of anemia associated with an elevated latent iron binding capacity (reduced transferrin saturation) on urinary Pu excretion was clear. During the first 6 days post injection the four anemic Pu(IV)-injected patients excreted significantly less Pu in their urine $(0.60\% \pm 0.15\%)$ than did those whose hemograms were presumably normal $(1.05 \pm 0.25\%)$. Lower initial Pu excretion is what would be expected on the basis of the increased binding capacity of transferrin associated with most anemias. During the interval of 19 to 24 days, the patients, t slightly me 0.03%), t The curves that The maje distinct se The were calcifudged to judged to and UA2. almost tw UA3 of the group. The were not Pu excretical proceaffected. The greater, a meters do group. T that Pu is citrate. I accord w stable tha U₃, and not very the group hematope For a Pu uring good heapersons juplasma Purve wa Table V, awn or can be physiological is other than ng to 0.2 mg dasma iron.84 mbly include on of kidney, unts of iron, lomerulus or during trans-· excrete un-10 2% of inmplcs.85 sould depend or binding to Pu chelates. the amount binding sites and dictary of transferrin ient anemia, and hemoic rate of its aers. In order physiological day intervals deal histories tein synthetic tus of hema- latent iron mary Pu exfour anemic their urine presumably at would be ansferrin as-11 days, the last 6 days for which excreta were collected from all the Pu(IV)-injected patients, the urinary Pu of the anemic patients (0.13% \pm 0.06%) was slightly more than that of the hematologically normal patients (0.11% \pm 0.03%), though not significantly so. The urine curves of the four persons studied longest and the best curves that could be drawn for the dog and the pig are shown in Figure 3. The majority of the individual Pu urine curves contained two to four distinct segments, depending upon how long excreta were collected. The means \pm standard deviation of the raw intercepts and half-times were calculated (see Table V) for the ten Pu(IV)-injected persons, six judged to have normal kidney and hematopoietic function, and four judged to be anemic. The intercepts of the first two components, UA₁ and UA₂, of the Pu urine curves of the presumably normal persons were almost twice as large as UA₁ and UA₂ determined for the anemic cases. UA₃ of the normal group was substantially lower than UA₃ of the anemic group. The half-times of these three components of the Pu urine curves were not affected by anemia or kidney disease. Although the amounts of Pu excreted in the urine were altered as a result of the various physiological processes associated with anemia, their rates were apparently unaffected. The average intercept, UA₁, of the Pu(VI)-injected cases was greater, and the half-time, US₁, was less than the values of these parameters determined for either the normal or anemic Pu(IV)-injected group. The greater early urinary excretion of Pu(VI) citrate suggests that Pu in this form is more readily filtered by the kidney than is Pu(IV) citrate. The more rapid decay of the initial urinary component is in accord with Bruenger's suggestion⁸⁶ that Pu(VI) protein binding is more stable than that of Pu(IV). The average intercepts and half-times of U₂, U₃, and U₄ of the Pu(VI)-injected persons were either the same as, or not very different from, the values of these parameters determined for the group of Pu(IV)-injected cases with normal kidneys and normal hematopoiesis. For radiological protection purposes the need is characterization of a Pu urine curve representative of an adult human being in reasonably good health. Therefore, in this analysis data were excluded from those persons judged to have obviously abnormal kidney function or abnormal plasma Pu binding (the anemic persons). A five-component exponential curve was constructed; the raw intercepts and half-times are shown in Table V, and the parameters of its equation appear in Table VI. not notice patients, as in the calc likely to be posure, an the calcul. of the urin from those time deter: Only Chiestimate of The c sufficiently US₅, are to tion. The l one-third to were not d but if US. urine curve Some are shown mens were tion of Pu cessation of plicated be lower levels occupation: urine curve slope of the human Pu (11 years) v The 1 Fig. 3. Daily urinary Pu excretion by several Pu-injected persons, dogs and miniature swine. Swine data are from Clarke et al.⁴⁰; dog data are from B. J. Stover and D. R. Atherton (original data) $0.1 \,\mu\text{Ci/kg}$ groups only. * The da taken o Forema
and zer 700 logs and om B. J. The half-times of the early components of the Pu urine curve were not noticeably affected by the physical disabilities of the individual patients, and the half-times of all the Pu(IV) urine curves were included in the calculated averages for each component. Pu(IV) is deemed most likely to be the chemical form of Pu encountered in an occupational exposure, and for this reason the Pu(VI)-injected cases were omitted from the calculated mean of US₁. The half-times of the later components of the urine curves of the Pu(VI)-injected individuals were not different from those determined for the persons given Pu(IV); therefore, all half-time determinations have been included in calculation of US₂, and US₃. Only Chi-3 and Cal-1, who were both injected with Pu(VI), provide any estimate of US₄, but neither was followed long enough to define it closely. The only human Pu urine measurements at post-injection intervals sufficiently long to permit estimation of the slope of the next component, US₅, are two samples obtained from HP-6, 525 and 1610 days post injection. The line joining these two points has a half-time of 1250 days, only one-third the value of US₅ in the Pu urine curve of the dog. US₅ and US₅ were not defined for HP-6 because collections were terminated too soon, but if US₅ and US₄ for HP-6 are similar to the other cases, then the urine curve for HP-6 should bend between the two late sample points, and US₅ should be greater than 1250 days. Some long-term urine data from four occupationally exposed persons are shown in Figure 4: WBG, DLW, and WAB, from whom urine specimens were obtained periodically for as long as 1698 days after termination of Pu exposure; and LASL-1 who was followed for 3500 days after cessation of his initial high level Pu exposure. The latter case is complicated because the individual returned to work with Pu, but at much lower levels, 2350 days after the end of his first Pu exposure period. The occupational data suggest that the longest half-time of the human Pu urine curve is perhaps as long as 13,400 days—the least-squares-fitted slope of the LASL-1 urinalysis data.* In the absence of reliable human data, and because of the half-times of comparable early portions of the human Pu urine curves are similar to those in the dog and pig, 4000 days (11 years) was selected as a working value for US₅ for man. [•] The data points shown in Figure 4 for LASL-1 are average of all the urinalyses taken during each 6-month interval: the original data appear in Table 3 of Foreman et al. These averages were not weighted for the number of analyses, and zero values were ignored. 0.200 1.9 0.50 Abnormal kidney HP-4 26 | urine Pu curves. | |------------------| | <u> </u> | | urinc | | human | | of unanalyzed | | o | | half-times | | nnd | | Intercepts and | | ∠. | | Table V. | | | Day of | UA. | US, | $UA_{\mathbf{i}}$ | US, | UA, | US_3 | UA. | US, | UA_s | US, | |-------------------|-----------------|----------|------|-------------------|------|-------------|--------|---------|------|--------|--------| | Case | sample | %/day | days | %/day | days | %/day | days | Ço∕day | days | ζe/qaλ | days | | Pu | Pu (IV) citrate | a | | | | | | | | | | | Normal | | | | | | | | | | | | | HP-2 | 34 | 0.58 | 1.9 | 0.105 | 8 | 0.0098 | | | | 4, | | | HP-3 | 23(1,610) | 0)° 0.76 | 1.1 | 0.270 | 2.8 | 0.0205 | | 0.0035 | | 0.0011 | | | HP-5 | 22 | 0.40 | 1.1 | 0.050 | 9.3 | 0.0240 | 71 | | | | | | HP-6 ⁴ | 22(1,698 |) 0.35 | 2.1 | 0.092 | 6.5 | 0.017^{b} | | 0.0050 | | 0.0015 | 1,250° | | HP-8 | 65 | 0.46 | 1.2 | 0.148 | 5.1 | 0.023 | 64 | | | | | | HP-10 | 30 | 0.55 | 1.9 | 0.162 | 5. | | | | | | | | Mean | | 0.54 | 1.65 | 0.138 | 6.1 | 0.0189 | 89 | 0.00425 | | 0.0013 | | | +S.D. | | 0.12 | 0.44 | 0.05 | 2.3 | 0.006 | | | | | | | Anemic | | | | | | | | | | | | | HP-1 | 25 | 0.21 | 2.7 | 0.097 | 9. | | | | | | | | HP-7 | 37 | 0.28 | 5.6 | 0.044 | 9. | 0.0100 | | | | | | | HP-9 | 36 | 0.24 | 1.2 | 0.100 | 5. | 0.0400 | 45 | | | | | | HP-12 | 58 | | 1 | 0.112 | 7. | 0.0330 | 42 | | | | | | Mean | | 0.24 | 2.1 | 0.088 | 7.6 | 0.0277 | 44 | | | | | | +S.D. | | 0.03 | 0.58 | 0.03 | 1.6 | 0.002 | 44 44 | |-------------------------------------| | 0.0400
0.0330
0.0277
0.005 | | 5.
7.
7.6
1.6 | | 0.100
0.112
0.088
0.03 | | 1.2 | | 0.24 | | કેઈ
58 | | HP-9
HP-12
Mean
±S.D. | | Abnormal kidney
HP-4 26 | kidney
26 | 0.50 | 0.50 1.9 | 0.200 7. | 7. | | | | | 1 | |----------------------------|-------------------------------|-------------------|----------|----------|-----|--------|----|--------|-----|-----| | Pu | Pu (VI) citrate or PuO:(NO:): | e or PuO:(| NO:); | | | | | | | | | Anemic | | | | | | | | | | | | Cal-1 | 341 | 09.0 | 1.0 | 0.180 | 4.6 | 0.012 | 71 | 0.0019 | 460 | | | Chi-1 | 155 | 2.53 | 0.33 | 0.220 | 3.6 | 0.035 | 29 | | | | | Chi-2 | 15 | 0.27 | 1.4 | 0.058 | 8.0 | | | | | | | Mean | | $\overline{1.22}$ | 0.86 | 0.124 | 6.3 | 0.0223 | 18 | | | | | ±8.D. | | 1.01 | 0.45 | 0.089 | 5.6 | 0.012 | | | | - 1 | | N | 100 | | | | | | | | | | | Chi-3° 164 | ianon
164 | 1.50 | 0.7 | 0.038 | 6 | 0.020 | 42 | 0.011 | 440 | į | Renal function and erythropoiesis judged to be within normal limits. LANL * Estimated from constructed curves shown in Appendix 2abc. US, of HP-6 defined by two points at 525 and 1,610 days.** Single samples taken at these late post-injection intervals. "No published hematologic data, but presumed to be within normal limits. " Underlined means were compared with the means inunediately below by use of the t-test and "p" = 0.05. 'Kidneys abnormal. * Both renal and hematopoietic function can be impaired in the advanced stages of Hodgkin's disease. (Included in Pu(VI) group mean.) P. W. DURBIN 100 Pu in 24-hour urine sample—occupational exposures (Dis/min) l,O Fig. 4. Compapersons and the din this papersonally elements — LASL-1 5(0.1 Table VI. Urinary and fecal exerction of Pu by adult man, young adult beagle, and adolescent miniature swine. Parameters of exponential excretory equations." | • | | | | | | | | | | | |--|-------------------------|------------|--------------|------------|---------------|------------|-------------------------------|------------|--|--| | | a ₁
%/day | r,
days | a 2
%/day | re
days | α 3
ζο/day | r,
days | * 4
%/day | τ,
days | α s
96/day | days | | Normal Man
Urinc ^b
Feces ^c | 0.41 | 1.2 | 0.12 | 5.5 | 0.013 | 42
56 | 0.003
(0.002) ^d | 300 | (0.0012) ^d
(0.0012) ^d | (4,000) ^d
(4,000) ^d | | Dog*
Urine
Feces | 4.6°
3.0 | 0.48 | 0.15 | 3.3 | 0.08 | 4 | 0.008 | 450
350 | 0.004 | 3,850
3,850 | | Swine ^e
Urine
Feces | 0.48 | 09.0 | 0.23 | 2.5 | 0.05 | 01 01 | 0.042 | 380 | | | n U_1 (57/day) or F_1 (%/day) $\approx \sum_{n=1}^{n} n_n \exp\left(-0.6934/\tau_1\right)$. ^b Kidney function and hematopoiesis presumed to be within normal limits. Liver and digestive tract function pressumed to be within normal limits. "Stover et al." and B. J. Stover and D. R. Atherton, original data: 0.1 µCi/kg and 0.3 µCi/kg groups only. 'Average of two components $U_{\sigma_{1n}}=4.1\%/day$, $U_{\tau_{1n}}=0.2$ day; $U_{\sigma_{1h}}=1.9\%/day$, $U_{\tau_{1h}}=0.8$ day. " Data read from Figure 1 of Clarke et al." Lagerquist et al.⁸⁷ reported an accident involving contamination of a Pu worker designated RF-2075 (S. E. Hammond, private communication). He inhaled some Pu, and his body surface was contaminated, but the bulk of his internal burden was apparently the result of Pu embedded in an injured hand. Twelve days after the accident 98% of the Pu in his hand was removed surgically, and he could be considered to have had a single acute exposure. The urinary Pu excretion of RF-2075 is plotted in Figure 5 from data read off the published curves. This is a complicated case; the individual was treated almost continuously with DTPA, and three operations were performed to remove the Pu from his hand. Figure 5 shows, however, that the raw half-times of his Pu urine curve are very close to those obtained from the urine curves of the Pu-injected persons (see Table V). On the Fig. 5. Comparison of urinary Pu excretion after an accidental exposure and treatment with DTPA with the normal Pu urine curve. Data for RF-2075 were read from Figures 1-6 in Lagerquist et al. ⁸⁶ O — DTPA treatment two to seven times a week, ● — no DTPA treatment, • — no DTPA treatment values multiplied by 10. other hand, injected cas pattern broa The value were those normal kids from the P four person urinary Pu No Pu post injection the curves of of four add of UA_3 . Only (Comparison days post in days and (value of U sequently, th was used to ported elsey Gastrointest The or HP-12 are read from I for Chi-2, a As disc filtration by ferrin. The can also be Fe and Pu The humamg/day of counts for 3 80 g of inte another 13 P. W. DURBIN 497 sination of a communicasinated, but a embedded he Pu in his to have had 5 from data c individual cations were wever, that se obtained 1). On the al exposure tata for RF-'\ treatment no DTPA other hand, the intercepts of the Pu urine curves of RF-2075 and the Puinjected cases are quite different, reflecting the changes in Pu deposition pattern brought about by prolonged DTPA treatment. The values selected for UA_1 and UA_2 in the human urinary curve were those determined for the Pu(IV)-injected persons with presumably normal kidneys and hematopoiesis. The intercepts of the curves obtained from the Pu(VI)-injected series were rejected throughout, because the four persons in that series met one or more of the criteria for altered urinary Pu excretion. No Pu(IV)-injected individual provided urine data after 65 days post injection; however, a third component, U₃,
emerged early enough in the curves of four cases to identify UA₃. The last few points on the curves of four additional cases suggested an inflection and permitted estimation of UA₃. Only Cal-1 was followed long enough to identify the intercept, UA₄. Comparison of his daily urinary Pu, 0.0011 %/day between 300 and 350 days post injection, with the urinary Pu of HP-6, 0.002 %/day at 525 days and 0.0011 %/day at 1610 days post injection, suggests that the value of UA₄ obtained from Cal-1 is low by at least a factor of two. Consequently, the graphic construction method shown in Appendix 2 for HP-6 was used to estimate UA₄ and UA₅. Details of the construction are reported elsewhere.⁶⁴ #### Gastrointestinal excretion of plutonium The original Pu fecal excretion data for Chi-1 and HP-1 through HP-12 are given in *Table 9* of Langham et al.¹⁹ Fecal Pu for Cal-1 was read from *Figure 1* of Crowley et al.⁵² Urine and feces were not separated for Chi-2, and fecal data were not reported for Chi-3. As discussed in the preceding sections, Pu transport in blood and Pu filtration by the kidney are largely determined by Pu binding to transferrin. The small gastrointestinal elimination of Pu by larger animals can also be better understood in light of the stability of the complexes of Fe and Pu with transferrin and the high degree of conservation of iron. The human gastrointestinal tract normally excretes approximately 0.6 mg/day of iron. The secretion in the secretion in bile accounts for 33% of fecal excretion, and loss of iron contained in the 50 to 80 g of intestinal epithelial cells that are desquamated daily accounts for another 13%. The remaining 40% of gastrointestinal iron exerction may be associated with other digestive secretions (gastric, pancreatic, and intestinal juices).^{36, 88} Crosby⁸³ suggests that the gastrointestinal tract is also an important site of transferrin catabolism. It was suggested that early urinary Pu excretion was related in a roughly reciprocal way to the level of transferrin saturation. By the same line of reasoning, at least two of the proposed gastrointestinal excretory mechanism — biliary and digestive-juice secretion — might also be expected to be influenced by the degree of digestive tract secretion. If dietary intake were low or consisted of soft, bland, nonstimulating foods, the volume of digestive secretions might be lower and fecal Pu consequently reduced. During the first two weeks after injection some individuals consistently excreted more Pu in their feces than did others. In order to determine whether fecal Pu was related to medical status, fecal Pu was summed for each patient over the first and last 6-day intervals for which fecal collections were obtained from all the patients. Gastrointestinal tract and liver function and the amounts and varieties of foods eaten were judged to be within normal limits for six Pu(IV)-injected patients. Three patients were being treated for peptic ulcers and were probably taking small meals of soft bland foods to reduce gastrointestinal stimulation and secretion. After a total gastrectomy on the fourth day following his Pu injection, Cal-1 passed little fecal matter through day 17. Two patients were being treated for severe cardiac conditions, and it was considered likely that they too were taking in less than normal amounts of food and liquids. HP-3 was being treated for hepatitis, and the presence of pruritic dermatitis strongly suggests that she was also jaundiced and that her bile output was less than normal.90 Chi-1 was operated on twice (15 days before and 2 days after his Pu injection) to remove tumorous tissue from his buccal cavity. His output of fecal matter was normal shortly after injection,47 but as his condition deteriorated, the buccal lesion ulcerated to the bone, apparently making intake of ordinary foods difficult. After the hundredth day his fecal bulk was below the lower limit of normal.91 If only the Pu(IV)-injected cases are considered, the average fecal Pu of those persons judged to have normal gastrointestinal function and normal dietary intakes was $1.32\% \pm 0.30$, nearly twice that of the persons with gastrointestinal difficulties or restricted dietary intakes, $0.67\% \pm 0.14$. The difference was significant (P<0.01)⁸³ during the first 6 days after injection, but of only borderline significance between 19 and 24 days post in ± 0.04 (P) Pu excretion The or Appendix 2 not possible tive fecal exfunction of estimated for the cumulat fecal Pu cu and the unstimes for exthe three pand the best dog and the The mintercepts windividuals testinal tractand for the normal ame judged to his first two coffs, and FS status of the peared to components. FS₂ con was good a an average only 100 day ever, this pocurve, US₄ = 4000 days, γ μCi/kg groups [•] Feces w as 2921 survivor reatic, and inad tract is also is related in a in. By the same tinal excretory ht also be extion. If dietary ing foods, the a consequently iduals consistrder to deter-# was summed r which fecal final tract and : were judged hree patients g small meals and secretion. Pu injection, as were being rd likely that ! and liquids. iritic dermatier bile output as before and om his buccal njection,47 but the bone, apne hundredth function and of the persons \$\times 0.67\% \pm \text{ar first 6 days} \tag{19 and 24} days post injection; normal diet, $0.20\% \pm 0.08$; restricted diet, $0.09\% \pm 0.04$ (P=0.05). There were no discernible correlations between fecal Pu excretion and erythropoietic status. The original fecal Pu data are plotted along with the urine curves in Appendix 2. Analysis of the early portions of most of these curves was not possible, because feces were sampled as 2- to 6-day pools. A cumulative fecal excretion curve was prepared for each case plotted as a linear function of time. Fecal lag — that is, gastrointestinal transit time — was estimated for each case by extrapolating the earliest defined portion of the cumulative curve to % dose/day = 0. The differentiated cumulative fecal Pu curves were replotted on a semilogarithmic scale (not shown), and the unanalyzed half-times, intercepts (at t = fecal lag), and fecal lag times for each case are collected in Table VII. The fecal Pu curves of the three persons who were followed for the longest time after injection, and the best curves that could be drawn for fecal excretion of Pu by the dog and the pig are shown in Figure 6. The means \pm standard deviation of the unanalyzed half-times and intercepts were calculated (see Table VII) for the six Pu(IV)-injected individuals that were presumed to have normally functioning gastrointestinal tracts and to be eating ordinary amounts of a mixed hospital diet and for the five Pu(IV)-injected persons judged to be taking in less than normal amounts of food or to be on soft diets (including HP-3, who was judged to have a lower-than-normal bile output). The half-times of the first two components of the normal Pu fecal curve are the averages of FS₁ and FS₂ determined for all the cases, because neither the medical status of the individuals nor the chemical form of Pu administered appeared to change the rates of the processes leading to these fecal-curve components. FS₃ could be determined only for HP-7, Chi-1, and Cal-1. There was good agreement among the three and all were used to calculate an average FS₃. FS₄ observed only for Cal-1 emerged in his fecal curve only 100 days before collections were terminated, so it is uncertain. However, this portion of the Cal-1 fecal curve was almost parallel to the urine curve, US₄ = 475 days, which is encouraging. The value chosen for FS₅, 4000 days, was obtained by least-squares-fitting the fecal data of the 0.1 μ Ci/kg group of Utah dogs from 750 through 1750 days post injection.* [•] Feces were collected periodically from some of the 0.1 µCi/kg dogs for as long as 2921 days. Data for individual dogs as well as the mean values of all survivors exhibited a rising trend after 1800 days. Restricted diet 107 0.000 | Table VII. Half-times and intercepts of unanalyzed differentiated cumulative fecal Pu curves. | | |---|---| | 7
8 | | | n Cr | I | | 1 Pu | | | cca | - | | vef | | | ılati | | | nur | | | d
G | | | iate | | | rent | | | iffe | | | <i>q</i> q | | | lyze | | | ana | | | nn | | | s of | | | ich
Sept | | | iter | | | d in | | | an | | | E C | | | If-ti | | | Ha | | | VII. | | | le 1 | | | Tal | | | last sample | sample (days) | (%/day) | (days) | (%) (day) (| (days) | (%/day) | (days) | (%/day) | (days) | |-------------|--|-------------------|--|--|--|--|--|--|--| 27 | 2 | 0.62 | 2.5 | 0.16 | 10.0 | | | | | | 82 | | 0.75 | 3.1 | 0.35 | 0.9 | 0.012 | | | | | 22 | 1.5 | 1.50 | 0.7 | 0.17 | 6.7 | | | | | | 22 | 1.5 | 09.0 | 1.2 | 0.067 | 7.5 | | | | | | 35 | 0.5 | 0.55 | 4.0 | 0.27 | 8.0 | | | | | | 46 | 1.5 | 09.0 | 2.0 | 0.072 | 16.0 | 0.020 | | | | | | | 0.77 | 2.3 | 0.18 | 9.5 | | | | | | | | 0.36
| 1.2 | 0.12 | 3.7 | | | | | | uo | | | | | | | | | | | 23 | 2.0 | 0.24 | 2.7 | 0.082 | 7.7 | | | | | | , 0 | Pu(IV) citrate Normal dict HP-2 HP-4 82 HP-5 22 HP-6 22 HP-9 HP-12 HP-12 Acan ±S.D. Reduced liver function HP-3 23 | 2 2 2 2 2 2 2 3 4 | 2 1
2 1.5
2 1.5
5 0.5
6 1.5
3 2.0 | 2 0.62
2 1 0.75
2 1.5 1.50
2 1.5 0.60
5 0.5 0.55
6 1.5 0.60
0.77
0.36 | 2 0.62 2.5
1 0.75 3.1
2 1.5 1.50 0.7
2 1.5 0.60 1.2
5 0.5 0.55 4.0
6 1.5 0.60 2.0
0.77 2.3
0.36 1.2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2 0.62 2.5 0.16 10.0
2 1 0.75 3.1 0.35 6.0
2 1.5 1.50 0.7 0.17 6.7
2 1.5 0.60 1.2 0.067 7.5
5 0.5 0.55 4.0 0.27 8.0
6 1.5 0.60 2.0 0.072 16.0
6 0.77 2.3 0.18 9.2
0.36 1.2 0.12 3.7 | 2 0.62 2.5 0.16 10.0
2 1 0.75 3.1 0.35 6.0
2 1.5 1.50 0.7 0.17 6.7
2 1.5 0.60 1.2 0.067 7.5
5 0.5 0.55 4.0 0.27 8.0
6 1.5 0.60 2.0 0.072 16.0
6 0.77 2.3 0.18 9.2
0.36 1.2 0.12 3.7 | | 82 7.7 | | |---------|--| | 7 0.082 | | | 4 2.7 | | | 0 0.24 | | | 2.0 | | | 23 | | | HP-3 | | | Restricted diet | | | | | | | | | | | |-------------------|---------------|-----|-----------|-----|-------|------|--------|----|--------|--------| | p-1 | 24 | 1.0 | 0.33 | 2.5 | 0.049 | 12.7 | | | | | | D 7c | 85 | 0.5 | 0.16 | 3.8 | 0.105 | 6.5 | 0.013 | 89 | | | | HP-8 | 64 | 1.0 | 0.52 | 1.8 | 92.0 | 16.0 | 0.017 | | | | | P-10 | 30 | 2.0 | 0.26 | 2.7 | 0.094 | 6.5 | | | | | | Meand | | | 0.30 | 2.6 | 0.081 | 6.6 | 0.015 | | | | | ±S.D. | | | 0.13 | 0.8 | 0.05 | 4.3 | | | | | | Pu(VI) citrate or | te or nitrate | | | | | | | | | | | Restricted diet | | | | | | | | | 6 | ,
, | | Cal-1° | 341 | | undefined | | 0.18 | 4.6 | 0.0034 | 77 | 0.0006 | 650 | | Diet not known | | | | | | | | | | | | Chi-1° | 138 | 1.0 | 1.00 | 1.3 | 0.18 | 7.0 | 0.008 | 85 | 0.0018 | | | | | | | | | | | | | | Intercept at t = fecal lag. Fecal lag determined by extrapolation of cumulative fecal curve. The second secon . Anemic. 4 Includes HP-3. agle 100 700 > and miniature eriginal data) Siarke et al.40 The intercepts of the first two components of the fecal Pu curves of the persons with normal digestive function were almost double those of FA_1 and FA_2 calculated for the persons having reduced gastrointestinal function, but the differences were not statistically significant. However, the intercepts of the first two components of the normal fecal Pu curve are the mean values of FA_1 and FA_2 determined for only those persons whose gastrointestinal tracts were judged to be normally stimulated and normally functional. FA_3 is the mean of the four Pu(IV)-injected cases for whom that parameter could be estimated. Values for FA₄, the intercept of the longest observed component, were available from only two Pu(VI)-injected persons, neither of whom was considered to have a normally functioning gastrointestinal tract. The last 40 days of fecal collections from Chi-1 were only one-half normal bulk and he was near death from metastases of his malignancy. FA3 of his fecal curve was one-half that either observed or estimated for the less seriously ill Pu(IV)-injected persons. FA₃ from the fecal curve of Cal-1 was even lower — slightly more than 50% of FA3 for Chi-1, and 20% of the average FA₃ of the Pu(IV) group. His stomach had been completely removed four days after the Pu injection. In the absence of a stomach, his daily food intake was probably low, and gastric juice - which makes up a significant fraction of the total volume of digestive secretions - was absent. Gastric acid is one of the normal stimulants of the secretion of bile, pancreatic and intestinal juices, and intestinal mucus. 90, 92 Iron absorption is reported to be reduced by as much as 50% after gastrectomy.84 Lack of gastric juice may have played an indirect as well as a direct role in reducing the quantity of gastrointestinal secretions and concomitantly the amount of Pu excreted in feces by Cal-1.* It was assumed that the relationships between the FA₃'s of Chi-1 and Cal-1 and the Pu(IV)-injected group, $FA_3(Chi-1) = 0.5 \ FA_3[Pu(IV)]$ and $FA_3(Cal-1) = 0.21 \ FA_3[Pu(IV)]$, could be used to estimate FA_4 for the Pu(IV)-injected group as follows: $$FA_4 = [(0.0018/0.5) + (0.0056/0.21)] \div 2 = 0.003 \%/day.$$ An approximation of FA₅ was obtained by assuming that F₅ in the human curve and in the dog curve emerged at about the same time post injection. F₄ was extrapolated to that time (900 days), a line of 3850-day There is a possibility that systematic errors in collection and analysis also contributed to the low fecal Pu values of Cal-1.^{52, 64} half-time was drawn through the 900-day point, and its intercept was determined to be 0.0012 %/day. The parameters of the five-component "normal" human fecal excretion curve appear in Table VI. Urinary and Fecal Clearance of Plutonium Having no fecal data beyond 138 days, Langham et al.¹⁹ were forced to use an estimate of the Pu U/F ratio to calculate long-term Pu excretion. However, both terms of the U/F ratio are subject to change, and clues to the nature of some changes — either in excretory efficiencies or in the chemical state of circulating Pu — can be obtained from plasma clearances. Accurate determination of urinary clearance requires simultaneous sampling of plasma and bladder urine. In the absence of precise measurements for man, Equations (4) and (5) were used to estimate excretory clearances from the data available for man, namely, intermittent plasma samples, 24-hour urine samples, and pooled fecal specimens. $$E_{Xe1} = \frac{\sum_{i=1}^{t_2} E_X}{\sum_{i=1}^{t_2} (4)} \quad \text{where} \quad P(t) = \sum_{i=1}^{t_{i=n}} (P_i e^{-\lambda_i t}). \quad (5)$$ Both urinary fecal clearances were calculated over 6-day intervals for as long as blood measurements were made, but only two intervals, at the beginning and the end of measurements, are shown. Painter et al.¹⁴ measured urinary Pu clearances of dogs injected with acutely toxic toses of Pu(VI) citrate. Urinary clearance of Pu was very high 15 to 30 minutes post injection, but dropped rapidly to a minimum which persisted from 4 hours to the end of the first day. After the first day, urinary clearance rose slightly to a level that was sustained for the next 15 days. The urinary Pu clearances calculated for man revealed a similar pattern. The very high initial clearance could not actually be demonstrated, because the earliest urine samples were pooled for the first 24 hours. However, the first 12 urine specimens passed by Chi-1 were analyzed separately, and 83% of the Pu excreted in the first 48 hours was passed in the first (0- to 6-hour) specimen.⁴⁷ In the face of his rapidly declining blood level¹⁸ this large urinary output would indicate a high initial Pu clearance. In ever intestinal to lasted through fecal lag). 15 days du stable plate between deculations to 24 days afficient as it v Renal than one-lapersons juone-half that intestinal to Urine two interv possible. (1.3); five substantial from the t both later were all le from perse long-term results ha was consid It ap U/F ratio 1.0 and p intestinal : sons with reduced g. 1.0. The : to be eleviurinary ar to 1.0. Lang to 4.4 at intercept was five-component al. 19 were forced term Pu excreto change, and efficiencies or in all from plasma are requires simsence of precise to estimate exty, intermittent specimens. $\lambda(t)$. (5) intervals for as ntervals, at the injected with of Pu was very to a minimum or the first day, for the next 15 d a similar patdemonstrated, first 24 hours, were analyzed ans was passed pidly declining high initial Pu In every case the average Pu clearances by the kidney and the gastro-intestinal tract were lowest on the first day after injection (the minimum lasted through the third day for fecal clearance in some cases because of fecal lag). Clearance by either route rose to a temporary plateau of 5 to 15 days duration, and was followed by either another increase to a fairly stable plateau or a continued slow increase to the end of measurements between days 20 and 35. During the 2 weeks between the two sets of calculations both urinary and fecal clearances increased, so that by 19 to 24 days after injection, Pu excretion by either route was 3.7 times as efficient as it was during the first 6 days. Renal Pu clearance in those persons judged to be anemic was less than one-half that in persons considered normal. Fecal clearance in those persons judged to have reduced digestive system function was less than one-half that of persons considered to have normally stimulated gastrointestinal tracts. Urine to fecal ratios (U/F) were calculated for each case during the two intervals shown in Table VIII, using plasma clearances whenever possible. Of these 23 available U/F values, 13 were close to 1.0 (0.7 to 1.3); five were substantially less than 1.0 (0.3 to 0.6); and five were substantially more than 1.0 (1.4 to 2.2). The six U/F values obtained from the three persons judged to be most nearly normal with respect to both latent transferrin binding capacity and digestive system function were all less than 1.3. Of the five U/F values greater than 1.4, all were from persons with suppressed or impaired digestive system function. The long-term excretion data are only from Chi-1 and Cal-1, and their U/F results have been rejected for the same reason that their fecal excretion was considered low. It appears that during the first 30 to 60 days after Pu injection the U/F ratio for those persons judged to be most nearly normal was about 1.0 and possibly as great as 1.3. The anemic cases with normal gastro-intestinal function tended to have U/F values less than 1.0. Those persons with presumably normal plasma protein binding capacity but with reduced gastrointestinal function tended to have U/F values greater than 1.0. The anemic cases (in which protein binding capacity was presumed
to be elevated and gastrointestinal secretion suppressed) exhibited reduced urinary and fecal clearances of Pu, and their U/F values were again close to 1.0. Langham et al.¹⁹ used Pu U/F ratios varying from 1.8 at 138 days to 4.4 at 1750 days to estimate total long-term Pu excretion, but these U/F estimates we whom have been c ed or subnormally sented here suggestion in feces slight of the second weethat residual trangastrointestinal setthe coefficients of fecal Pu-excretion Pu injection long between 1.0 and 1 Human plutonium When excret excretion at time t U and similarly, feca · U/F calculated from ratios of plasma clearance except for HP-12 and values obtained after 35 days for HP-8, which are ratios of sum- 0.034 0.017 0.05 0.010 0.004 0.02 ±S.D. 0.0088 0.0007 0.01 \pm S.D. status groups in section on fecal excretion. R = restricted diet, Ab.L. = abnormal liver. medical status groups in section on urinary excretion. A = anemic, Ab.K. = abnormal kidney. The total amount integration of Equ Total excretion at and whole-body re The fraction of the t is Urinary and of Pu excreted in | | Reng | Renal Clearance | 9. | F | Fecal Clearance | <i>93</i> 1 | | $(U/F)^a$ | ļ | |----------------------------------|-----------|-----------------|-----------------|-----------|----------------------|-------------|--------|-----------|----------| | | | 1 to 6 | 1 to 6 19 to 24 | | 1 to 6 | 19 to 24 | 1 to 6 | 19 to 24 | 35 to 65 | | | $Group^b$ | days | days | | days | days | days | days | days | | HP.1 | < | 0.008 | | 24 | 0.00 | | 6.0 | | | | 4P.9 | ! | 0.017 | .031 | | 0.020 | 0.061 | 0.8 | 0.5 | | | HP.3 | | 0.020 | .070 | Ab.L. | 0.011 | 0.037 | 1.8 | 1.9 | | | 4P-4 | Ab.K. | 0.00 | .029 | | 0.010 | 0.030 | 0.9 | 1.0 | | | 4P.5 | | 0.021 | 860. | | 0.034 | 0.095 | 9.0 | 1.0 | | | HP-6 | | 0.020 | .130 | | 0.020 | 0.100 | 1.0 | 1.3 | | | HP-7 | ¥ | 0.011 | .025 | R | 0.008 | 0.027 | 1.4 | 6.0 | • | | HP-8 | 1 | 0.019 | 990. | R | 0.017 | 0.056 | Ξ | 1.2 | 1.3 | | 6 - dH | < | 0.00 | .034 | | 0.024 | 0.055 | 0.3 | 9.0 | | | HP-10 | • | 0.013 | 060 | × | 0900.0 | 0.051 | 2.2 | 1.8 | , | | HP-12 | V | | | | | | 0.4 | 0.7 | 1.2 | | Kidney and erythropoiesis normal | erythropo | esis norma | ~ | G.I. func | G.I. function normal | | | | | | Mean | , | 0.018 | .081 | Mean | 0.022 | 0.068 | | | | | ±S.D. | | 0.003 | 0.034 | ±8.D. | 0.009 | 0.029 | | | | U/F calculated from ratios of plasma clearance except for HP-12 and values obtained after 35 days for HP-8, which are ratios of sum Discussion of medical status groups in section on urinary excretion. A Discussion of medical status groups in section on fecal excretion. R .004 0.02 = restricted diet, Ab.L. = abnormal liver Ab.K. = abnormal kidney. excretion. A U/F estimates were based entirely on data from Chi-1 and Cal-1, both of whom have been considered in this reanalysis to have subnormally stimulated or subnormally functioning gastrointestinal tracts. The analysis presented here suggests that immediately after injection in man, Pu excretion in feces slightly exceeded Pu excretion in urine, and that by the end of the second week excretion by the two routes was nearly equal, provided that residual transferrin binding, kidney function, liver function, and gastrointestinal secretion remained within normal limits. Comparison of the coefficients of the long-term components of the exponential urinary and fecal Pu-excretion equations (see Table VI) suggests that at times after Pu injection longer than 100 days, U/F for Pu in man probably lies between 1.0 and 1.5. Human plutonium excretion — comparison with previous analyses When excretion rates are expressed as sums of exponentials, urinary excretion at time t after injection is $$U_{i} (\%/day) = \sum_{\mathbf{n}}^{\mathbf{n}} \frac{-0.693t/U\tau_{i}}{U\alpha_{i}e},$$ $$\mathbf{n} = \mathbf{i}$$ (6) and similarly, fecal excretion rate at time t is $$F_{t} (\%/\text{day}) = \sum_{n=1}^{n} F_{\alpha_{i}e}^{-0.693t/F_{\tau_{i}}}.$$ (7) The total amount of Pu excreted in urine or feces at time t is obtained by integration of Equations (6) and (7). $$\Sigma U_{\iota}(\%) = \int_{0}^{t} U_{\iota} dt, \qquad (8)$$ $$\Sigma F_{\iota}(\%) = \int_{0}^{t} F_{\iota} dt.$$ (9) Total excretion at time t is the sum of Equations (8) and (9). $$\Sigma E_t (\%) = \Sigma U_t + \Sigma F_t$$ (10) and whole-body retention at time t is $$R_t$$ (%) = 100% - Σ E_t . (11) The fraction of the remaining body burden excreted daily in urine at time $$U_b(\%/day) = (U_t \times 100)/R_t.$$ (12) Urinary and fecal excretion rates (Figures 7 and 8), the total amount of Pu excreted in urine and feces (Table IX), whole body retention and the fraction of the body burden excreted in a 1-day urine sample (Figure 9) were calculated for times after injection from 1 to 14,600 days (about 40 years), using Equations (6) through (12) and the parameters of the "normal" Pu urinary and fecal excretion equations given in Table VI. It was assumed for these calculations that a sixth component with a halftime of 13,400 days (see the discussion of case LASL-1 in the section on urinary excretion) emerged in both excretion curves about 4000 days after injection. Total Pu excretion after a single intravenous injection predicted by the sums of exponentials derived in this paper is compared in Table IX with that predicted by the power functions derived by Langham et al.10 Sums of exponentials predicted greater Pu elimination at all post-injection times for at least three reasons: (a) Exponentials fitted the first 10 days' data better than the power functions. (b) Only the individual urinecurve and fecal-curve coefficients from cases judged to be normal with respect to the particular excretory function were used to calculate the mean coefficients of the exponential equations, and they tended to be higher than the averages of all cases. (c) The coefficients of the exponential equa- Fig. 7. Comparison of human urinary Pu excretion (from 1 day to 40 years) predicted by the normal Pu urine curve with the Langham equation.¹⁹ Points shown were calculated from the parameters in Table VI. Fig. 8. Con predicted by ham et al.¹⁹ Fig. 9. Con in the urine fecal curves shown were #### E OLD DATA imple (Figure days (about incters of the in Table VI. with a halfhe section on #10 days after ion predicted in Table IX gham et al.19 post-injection first 10 days' vidual urineimal with reate the mean to be higher uential equa- to 40 years) equation.10 Appropriate the second of Fig. 8. Comparison of human fecal Pu excretion (from 1 day to 40 years) predicted by the normal Pu fecal curve and the equation given by Langham et al.¹⁹ Points shown were calculated from the parameters in Table VI. Fig. 9. Comparison of the percent of the Pu body content excreted daily in the urine from 1 day to 40 years predicted by the normal Pu urine and fecal curves in this paper and the equations of Langham et al.¹⁹ Points shown were calculated from the parameters given in Table VI. tion of human fecal excretion were adjusted upward to correct for what was considered to be unusually low long-term fecal elimination by Chi-1 and Cal-1. Table IX. Comparison of long-term Pu excretion predicted from power functions or sums of exponentials.^a | Time afte
(days) | r injection
(years) | Power functions,
Langham et al.19 | Sums of exponentials,
this paper | |---------------------|------------------------|--------------------------------------|-------------------------------------| | 10 | ····· | 2.56 | 4.39 | | 20 | | 3.17 | 5.25 | | 40 | | 3.81 | 5.95 | | 60 | | 4.21 | 6.35 | | 80 | | 4.50 | 6.67 | | 100 | | 4.74 | 6.96 | | 140 | | 5.10 | 7.39 | | 360 | 1 | 6.26 | 8.79 | | 720 | 2 | 7.22 | 10.23 | | 1,100 | 3 | 7.83 | 11.17 | | 1,500 | 4 | 8.30 | 12.24 | | 1,800 | 5 | 8.68 | 13.00 | | 3,650 | 10 | 9.96 | 15.47 | | 7,200 | 20 | 12.17 | 18.83 | | 14,600 | 40 | | 22.49 | ^{*} See Tables X and XIV for excretion equation parameters. For comparison with earlier analyses, the urinary and fecal excretion rate equations are replotted logarithmically in *Figures 7* and 8. At least three power functions were needed to describe these equations. The power function fitted to the calculated urinary excretion in the time period from 30 to 360 days was almost the same as that originally derived by Langham et al.¹⁹ from the raw averages of the data from the Pu-injected cases and some accidentally exposed persons and more recently reevaluated by machine curve fitting by Robertson and Cohn.²⁵ This paper, $$U_t$$ (%/day) = 0.17 $T^{-0.725}$ (30 $\leq T \leq$ 360 days) Langham et al,¹⁹ Y_{ua} (%/day) = 0.2 $X^{-0.74}$ (10 $\leq X \leq$ 1750 days) Robertson and Cohn,²⁵ Y_u (%/day) = 0.193 $t^{-0.721}$ [1 $\leq t \leq$ 1750 days) ### P. W. DURBIN Figure 9 is the burden excreted dais $40 \le T \le 360$ days using a different an. None of the p feeal excretion calc agreed with the endifference between handled and the coutput. Prediction of long-t. The currently body of occupation 0.4 μ Ci, respectivel lives are also given; days (200 years) for The term "ret a static condition. (remain fixed until el dogs demonstrate the of growth remodel released about 38% day bone deposit). I high. At 600 days the dose) as it cont At this writing 0.3 μCi/kg or less to skeleton of more that remodeling in these the first two years be one-half of the trabehad disappeared. To of new bone, and withese same low dose 3800 days. The proof events that carried eventually to long-licells. 26-28 #### THE OLD DATA arrect for what ation by Chi-1 d from power ecal excretion ad 8. At least is. The power period from ed by Langinjected cases evaluated by 360 days) 1750 days) 1750 days) P. W. DURBIN Figure 9 is the log-log plot of the fraction of the remaining Pu burden excreted daily in urine. The power function fitted to the time period $40 \le T \le 360$ days is nearly the same as that derived by Langham et al.¹⁹ using a different analytical method.
None of the power functions needed to fit the values of human Pu fecal excretion calculated from the exponential equation in Table VI agreed with the expression derived by Langham et al. 19 Most of the difference between the two methods arises from the ways fecal data were handled and the assumptions about the long-term trend of fecal Pu output. Prediction of long-term whole-body plutonium retention The currently accepted maximum permissible ²³⁹Pu contents of the body of occupational workers, based on skeleton and liver, are 0.04 and 0.4 μ Ci, respectively.⁵⁹ For purposes of dose calculations biological half-lives are also given; 6.5 x 10⁴ days (178 years) for whole body, 7.3 x 10⁴ days (200 years) for skeleton, and 3 x 10⁴ days (82 years) for liver. The term "retention" is potentially misleading, because it suggests a static condition. Once deposited in a tissue, Pu would be understood to remain fixed until eliminated from the body altogether. Studies of pigs and dogs demonstrate the dynamic behavior of Pu. In the course of 600 days of growth remodeling, the skeletons of adolescent miniature swine^{40, 41} released about 38% of the injected Pu(IV) citrate dose (53% of the 30-day bone deposit). Plasma Pu level and urinary excretion of Pu remained high. At 600 days the liver contained three times as much Pu (35% of the dose) as it contained 30 days after injection (13% of the dose). At this writing there have been enough deaths of Utah dogs given $0.3~\mu \text{Ci/kg}$ or less to establish a long-term half-time for Pu in the beagle skeleton of more than 1500 days. (perhaps as long as 5000 days). Bone remodeling in these 14- to 18-month-old dogs proceeded rapidly during the first two years but slowed thereafter. By 3 months post injection nearly one-half of the trabecular surfaces that had initially been labeled with Pu had disappeared. The remaining one-half had been buried by apposition of new bone, and were presumably less accessible for remodeling. At these same low dose levels, the half-time of Pu in the dog liver was about 3800 days. The prolonged residence in liver is the end result of a chain of events that carries Pu from plasma to Pu-ferritin in hepatic cells, and eventually to long-lived deposits of Pu-hemosiderin in reticuloendothelial cells. $^{96-98}$ Pu dynamics can be summarized as follows: Pu initially present in soft tissues other than liver is cleared rapidly; the major fraction is redistributed to bone and liver, and a small fraction is excreted. Pu deposited in the skeleton is mobilized in the normal course of bone remodeling; some is redeposited in bone, some is deposited in liver, and a small fraction is excreted. Pu deposited in liver is eventually transformed from relatively soluble forms in hepatic cells into insoluble hemosiderin deposits and sequestered in reticuloendothelial cells. Therefore, liver Pu is likely to be lost as slowly as, or more slowly than, bone Pu, but at perhaps the same rate as deposits of phagocytized Pu-hemosiderin in other tissues. The loss rate from the liver may eventually become the rate-limiting process for Pu disappearance from the whole body. The best estimates of the early distribution of Pu in four major compartments-skeleton, liver, residual soft tissues, and excreta-are shown in *Table X* for man, dog, and pig. The original analysis of the tissue distribution data is included for comparison. The pigs were not fully grown and the dogs were in the prime of young adulthood, in contrast to the Pu-injected human beings who were all unwell and, except for HP-4, middle-aged or older. In the dog and pig only a small fraction of the Pu dose was in soft tissues other than liver (3% to 8%) 22 to 30 days after Table X. Early distribution of Pu in man, dog, and pig. | | Time after | Injected Pu (%) Soft tissue | | | | |--------------|---|-----------------------------|-------|-----------|------| | | injection | Skeleton | Liver | remainder | | | Man | | | · | | | | This paper | 5 to 17 days* | 4 7.5 | 26.8 | 23.3 | 2.4 | | | 5 to 15 months ^b | 47.5 | 31.2 | 11.2 | 9.5 | | Langham et a | al ¹⁹ 4 to 457 days ^e | 65.7 | 22.5 | 6.8 | 5.0 | | Dog^d | 22 days | 51.0 | 34.0 | 2.0 | 13.0 | | Pig* | 30 days | 72.0 | 14.0 | 8.3 | 5.7 | Average of Cal-1, Chi-2, HP-11, Cal-3. Livers and skeletons of Chi-2 and HP-11 not included. See Tables I and II. injection.^{2a} An the soft tissues months post inj aged people co young vigorous effect of age ster connective tissu and reduced cel Frost⁹⁹ use of bone replace age to be betw ⁹⁰Sr analyses of activity ratios cortex, whole annual rate of activities — 1.1 6.2%/year in vland¹⁰² using a long-standing l for long-bone of agreement with The best human bones 1.85%/year for vertel suggested that surface of an trabecular to a be 23% of the estimates of bo bone surface of [(0.23 x 4)] The associated than the 15-y man. 104 Assum bone, 105 the ol ^{*} Averages of HP-5, HP-9, and Chi-1. See Tables I and II. Average of all tissues from all cases in Langham et al." Excretion estimated from power functions. Soft tissues calculated by difference. d Stover et al.110 Skeleton from Clarke et al.⁶ Liver from Smith et al.⁶ Excreta calculated from exponential equations in Table VI. Soft tissue calculated by difference. [•] Since this j almost excl ferrin, and ally present in action is redis-Pu deposited adeling; some all fraction is rom relatively deposits and is likely to be haps the same sues. The loss process for Pu ar major comta-are shown the tissue disot fully grown ontrast to the pt for HP-4, ion of the Pu 30 days after 3 2.4 2 9.5 8 5.0 9 13.0 hi-2 and HP-11 estimated from alculated from rence. injection.²⁶ An average of 11.2% of the Pu dose was calculated to be in the soft tissues of the Pu-injected people who came to autopsy 5 to 15 months post injection. The large soft-tissue compartment in these middle-aged people compared with the smaller soft tissue compartment in the young vigorous animals may be a species difference, or it may be a real effect of age stemming from poorer circulation, more fibrous (less cellular) connective tissue, the presence of ectopic calcifications and fatty plaques, and reduced cell turnover that accompany advancing age. Frost⁹⁹ used a tetracycline labeling method and estimated the rate of bone replacement in rib and clavicle cortex of persons 35 to 70 years of age to be between 2.5%/year and 6%/year. Kulp et al.¹⁰⁰ used fallout ⁹⁰Sr analyses of individual bones and whole skeletons to obtain specific activity ratios (⁹⁰Sr in bone/⁹⁰Sr in skeleton) in adult human long-bone cortex, whole rib, and vertebrae. Bryant and Loutit¹⁰¹ calculated the annual rate of bone turnover required to produce those observed specific activities—1.1%/year to 2.6%/year in whole femur, 2.1%/year to 6.2%/year in whole rib, and 5%/year to 10.4%/year in vertebrae. Rowland¹⁰² using an autoradiographic technique and bone from persons with long-standing burdens of ²²⁶Ra, calculated a turnover rate of 1.1%/year for long-bone cortex. All the above calculated turnover rates are in good agreement with each other. The best estimates of the annual mass replacement rates of certain human bones are probably the mid-points of the ranges cited above—1.85%/year for whole long bone, 4.2%/year for whole rib, and 7.7%/year for vertebrae. Pu is deposited on bone surfaces, and May¹⁰³ has suggested that the surface of a mass of trabecular bone is four times the surface of an equal mass of cortical bone. Using a ratio of 4:1, for trabecular to cortical bone surface, estimating trabecular bone mass to be 23% of the total (ashed or dried) skeleton, and using the above estimates of bone turnover, one calculates the average turnover rate of the bone surface of the entire human skeleton to be 5%/year. $[(0.23 \times 4 \times 7.7\%/\text{year}) + (0.77 \times 1.85\%/\text{year})] = 5\%/\text{year}.$ The associated half-time of the bone surfaces is 13.9 years, slightly less than the 15-year half-time observed in long-term ²²⁶Ra retention in man.¹⁰⁴ Assuming that 50% of circulating Pu is redeposited in human bone,¹⁰⁵ the observed half-time of Pu in the skeleton would be 88 years* ^{*} Since this paper was written, Nenot et al. ** have reported that Pu was deposited almost exclusively in the bone of rats injected intravenously with Pu(IV)-transferrin, and Durbin et al. ** concluded from a kinetic analysis of Pu(IV) citrate HP-2: V 230 Pu (IV) citt 14.5, RBC = 4 P. W. DURBIN HP-3: V μCi/kg ²³⁹Pu hypoproteinen tion, lost there *HP-4*: N μ Ci/kg ²⁰⁰Pu pathy with uppost injection. IIP-5: \\ 239Pu(IV) ci and adenoma *HP-6*: \\\\^239Pu(IV') \circ \\\Follow-up 52: HP-7: \frac{1}{239}Pu(IV) cit goiter. Hb = withheld. HP-8: μCi/kg ²³⁹Pu derma. Hb = HP-9: 1239Pu(IV) ci (dermatomy) of bronchopic *HP-10*: ²³⁹Pu(IV) ci to follow up. (10,220 days), reasonably close to the 13,400-day half-time that could be fitted to the long-term urine data of case LASL-1. The half-time of Pu in the human body was estimated in this analysis to be 204 years in substantial agreement with the upper limit calculated by Langham et al.¹⁹ The important consequence of Pu loss from bone faster than from the whole body is an increase in liver Pu with time. Mays et al.¹⁰⁶ have calculated that if the body Pu content were partitioned 50% in liver and 50% in bone, the annual risk of developing a liver tumor would be twice that of developing a bone tumor. The analysis in this paper suggests that over a 50-year working lifetime the liver's share of the body Pu content grows progressively larger, eventually approaching 50%. The consequences of this model and the calculations of Mays et al.¹⁰⁶ are that liver is as critical an organ for Pu as is the skeleton. #### DEDICATION This chapter is dedicated to the memory of Dr. Burris B. Cunning-ham, Professor of Chemistry, University of California at Berkeley, and Senior Staff Scientist of the Department
of Chemistry, University of California, Lawrence Radiation Laboratory, who with L. B. Werner first prepared plutonium in pure form and who developed on a microchemical scale the chemical techniques that were later used in the purification of large quantities of plutonium. I remember with pleasure and appreciation many conversations with Dr. Cunningham on matters of plutonium and actinide chemistry. #### APPENDIX 1 Summary of Plutonium Cases *HP-1*: White male, 67 yr, 70.3 kg, injected 10/16/45, 0.004 μ Ci/kg ²³⁹Pu(IV) citrate. Nine year history of peptic ulcer, acute hemorrhage, Hb = 13.7, RBC = 4.5. Lost to follow-up. deposition in the rat that the rat skeleton accumulated both free and protein-bound Pu but that the rat liver did not take up significant amounts of protein-bound Pu. Inasmuch as at times greater than a few hours after injection more than 90% of circulating Pu is protein bound, ^{32, 11} the deposition pattern of recirculated Pu is more likely to resemble that of Pu-transferrin than that of the Pu(IV) citrate originally injected. Thus, Pu redeposition in bone may be great as 80% to 90% leading to a longer calculated halftime of Pu in the human skeleton, ³⁶² about 70 years, and to a slower rate of Pu accumulation in the liver. that could ed in this apper limit of Pu loss in liver Pu extent were eveloping a he analysis the liver's equally apulations of the skeleton. Cunningkeley, and eversity of B. Werner a microthe puricusure and matters of .004 μCi/ HP-2: White male, 49 yr, 69 kg, injected 10/23/45, 0.0045 μCi/kg ²³⁰Pu(IV) citrate. Hemophilia, hypertension, cardiovascular disease. Hb = 14.5, RBC = 4.1. Lost to follow up. *HP-3*: White female, 49 yr, 69.9 kg, injected 11/27/45, 0.0043 μ Ci/kg ²³⁹Pu(IV) citrate. Hepatitis, pruritic dermatitis with edema, hypoproteinemia. Hb = 14.5, RBC = 4.3. Follow-up 1645 days post injection, lost thereafter. *HP-4*: White female, 18 yr, 55.5 kg, injected 11/27/45, 0.0054 μ Ci/kg ²³⁹Pu(IV) citrate. Cushing's syndrome, hypertension, nephropathy with uremia, osteoporosis. Hb = 15.0, RBC = 5.3. Died 18 months post injection, autopsy withheld. *HP-5*: White male, 56 yr, injected 11/30/45, $\sim 0.0044 \,\mu\text{Ci/kg}$ ²³⁹Pu(IV) citrate. Amyotrophic lateral sclerosis, pneumonia, renal cysts and adenoma. Died 151 days post injection, autopsied. *HP-6*: White male, 45 yr, injected 2/1/46, $\sim 0.0044~\mu \text{Ci/kg}$ ²³⁹Pu(IV) citrate. One-year Addison's disease, infected skin lesions. Follow-up 523 and 1610 days post injection, lost thereafter. *HP-7*: White female, 59 yr, 68 kg, injected 2/8/46, $0.0057 \, \mu \text{Ci/kg}$ ²³⁹Pu(IV) citrate. Rheumatic heart disease, cardiac decompensation, toxic goiter. Hb = 12.6, RBC = 3.26. Died 9 months post injection, autopsy withheld. *HP-8*: White female, 41 yr, 54.4 kg, injected 3/9/46, 0.0073 μ Ci/kg ²³⁹Pu(IV) citrate. Two year history of duodenal ulcers and sclero-derma. Hb = 13.9, RBC = 4.7. Lost to follow-up. HP-9: White male, 66 yr, 63 kg, injected 4/3/46, 0.0061 μ Ci/kg ²³⁹Pu(IV) citrate. 18-month history of muscular atrophy and dermatitis (dermatomyositis). Hb = 12.3, RBC = 3.9. Died 456 days post injection, of bronchopneumonia, autopsied. *HP-10*: Negro male, 52 yr, 71 kg, injected 7/16/46, 0.0053 μ Ci/kg ²³⁹Pu(IV) citrate. Congestive heart failure. Hb = 13.3, RBC = 5.5. Lost to follow up. and proteinof proteinof ion more pattern of that of the two be great the human in the liver. HP-11: White male, 68 yr, injected 2/20/46, $\sim 0.0056~\mu \text{Ci/kg}^{239} \text{Pu(IV)}$ citrate. History of chronic malnutrition and alcoholism. Died 5 days post injection, cirrhosis of liver, edema, acites, autopsied. HP-12: Negro male, 53 yr, injected 4/10/45, ~ 0.0044 μCi/kg ²³⁹Pu(IV) citrate. Multiple comminuted fractures. Hb = 8.9, RBC = 2.85 Biopsy 4 days post injection, lost to follow-up. (Also designated E. C. in Ref. 18). Chi-1: White male, 68 yr, 76.4 kg, injected 4/26/45, $0.0052 \,\mu\text{Ci/kg}$ ²³⁰Pu(VI) citrate. Metastasizing buccal epithelioma, mild pyelonephritis. Hb = 10.9, RBC = 3.56. Mouth surgery 2 days post injection. Died 160 days post injection, autopsied. (Also designated MX-100 in Ref. 48a). Chi-2: White female, 55 yr, 38.6 kg, injected 12/27/45, 0.15 μ Ci/kg ²³⁹Pu(VI) citrate. Metastasizing breast carcinoma and lymphoblastoma, both tumors invading liver, kidneys, and bone marrow, healing pathological rib fractures, Hb = 12, RBC = 3.5. Died 17 days post injection, autopsied. (Also designated WX-300 in Ref. 48b). Chi-3: White male, young adult, injected 12/27/45, ~ 0.085 $\mu\text{Ci/kg}^{239}\text{Pu}(\text{VI})$ citrate. Hodgkin's disease, no other information. Died ~ 170 days post injection, autopsy withheld. (Also designated as MX-200 in Ref. 48). Cal-1: White male, 58 yr, 58 kg, injected 5/14/45, $0.0896 \mu Ci/kg^{238}$ Pu, and $0.002 \mu Ci/kg^{239}$ Pu as $PuO_2(NO_3)_2$. Diagnosed as gastric carcinoma, gastrointestinal hemorrhage. Hb = 12, RBC = 4.1. Biopsy 4 days p.i. revealed huge gastric ulcer and adhesions. Total gastrectomy and splenectomy. Followed for 340 days, died 1/9/66 (21 yr. post injection) of cardiovascular disease. #### Case Cal-2* This case, a 4-yr-10-month-old white male of slight build, was suffering from osteogenic sarcoma with pathologic fractures. He was injected 4/26/46 i.v. with 0.169 μ Ci of ²³⁹Pu(VI) nitrate, and tissue samples were obtained 7 days post injection during a biopsy. Body weight was estimated to be 15.5 kg from Mühlmann's tables¹⁰⁷ and Bayer and Bayley's curve¹⁰⁸ of retarded growth. Blood volume was estimated to be 7.5% of the box to be 2300 g, a weight from Th no autopsy. Samples Cortex Tumor and adj trabecular bo Tumor adjacen Calcified tumo: Soft tumor and Periosteum Plasma - 1 hr Plasma - 4 day Reconstruction $\frac{(0.237)}{(4.05)}$ * Data of J. Case Cal-3ª This case, biopsy as havin femur, patella μ Ci ²³⁸Pu(VI) gastrocnemius p.i. Alive and w OLD DATA 56 μCi/kg Jism. Died μCi/kg μ, RBC = gnated E. 52 μCi/kg enephritis. Died 160 Ref. 48a). 45, 0.15 d lymphotow, healvs post in- ~ 0.085 tion. Died 16 μCi/kg as gastric Biopsy 4 tomy and injection) vas suffers injected c samples eight was and Bayted to be 7.5% of the body weight with a pcv = 0.4. Skeletal weight was estimated to be 2300 g, and the weight of the femora to be 0.125 of the skeletal weight from Theile's measurements¹⁰⁹ of children's bones. Died, 1/6/47, no autopsy. | Samples | Wet weight | % Dose | %/g | |--|-------------|-------------------------|-----------| | Cortex | 4.05 | 0.237 | 0.0585 | | Tumor and adjacent
trabecular bone | 3.7 | 0.129 | 0.0349 | | Tumor adjacent to cortex | 3.7 | 0.59 | 0.159 | | Calcified tumor and muscle | 0.61 | 0.0285 | 0.047 | | Soft tumor and muscle | 0.92 | 0.00085 | 0.00092 | | Periosteum | 0.65 | 0.00056 | 0.00086 | | Plasma - 1 hr | | 5.78 | 0.0043 | | Plasma - 4 days | | .077 | 0.00063 | | Reconstruction of whole b | one (femur) | | | | $\frac{(0.237 + 0.0005)}{(4.05 + 0.65)}$ | | $= \frac{0.372}{8.4} =$ | 0.0436%/g | ^{*} Data of J. G. Hamilton, K. G. Scott, and B. V. A. Low-Beer, unpublished. #### Case Cal-3* This case, a 73.3 kg, 36-yr old Negro male, was diagnosed from biopsy as having an osteo-fibro myxochondrosarcoma involving the distal femur, patella and proximal tibia. He was injected 7/18/47 with 0.095 μ Ci ²³⁸Pu(VI) nitrate intramuscularly at an ink-marked location on the gastrocnemius muscle. A mid-thigh amputation was performed four days p.i. Alive and well 7/17/68, 21 yr. post injection. | Ρ. | W. | DU | RB | 11 | |----|----|----|----|----| | | | | | | | Samples | Wet
wt. (g) | Ash
wt. (g) | Percent o
dose | of absorbed
dose/g | |-------------------------|----------------|----------------|-------------------|-----------------------| | Tumor | 29.5 | 0.37 | 0.60 | 0.0203 | | Bone and tumorb | 31.5 | 12.6 | 0.144 | 0.0046 | | Marrow | 4.0 | 0.05 | 0.063 | 0.0158 | | Normal cortex | 50.5 | 20.0 | 0.063 | 0.00124 | | Muscle from normal bone | 27.5 | 0.345 | 0.025 | 0.0009 | | Injection site | 69.5 | 0.87 | 46.6° | | Whole femur reconstruction: $$\frac{\text{(Bonc + tumor)} + \text{(marrow)} + \text{(normal cortex)\%}}{\text{(Bone + tumor)} + \text{(marrow)} + \text{(normal cortex)g}} = 0.00313\%/g$$ Appendix Fig. dividuals HP- ^{*} Data of J. G. Hamilton and J. C. Cowley, unpublished. b Part of distal femur, patella, and proximal tibia. ^{6 %} of administered dose. Appendix Fig. 2b. Original urine and fecal data of Pu(IV)- injected individuals HP-7, HP-8, HP-9, HP-10, and Pu(VI)-citrate injected Chi-2. Appendix Fig. 2c. individuals Chi-1, Cl - injected to injected Appendix Fig. 2c. Original urine and fecal data of Pu(VI)- injected individuals Chi-1, Chi-3, and Cal-1. #### REFERENCES - 1. R. S. STONE: in Industrial Medicine on the Plutonium Project (R. S. Stone, editor), National Nuclear Energy Series, Division IV, Vol. 20, McGraw Hill, New York, p. 9 (1951). - 2. A. H. COMPTON: Minutes of the Project Council: Metallurgical Laboratory CS-1137 (Dec. 8, 1943). - 3. M. D. WHITAKER: Minutes of the Project Council: Metallurgical Laboratory CS-1262 (Jan. 9, 1944). - 4. J. G. HAMILTON: Health Division: Metallurgical Laboratory Report CH-1459 (Feb. 29, 1944). - 5. R. S. STONE: Health Division: Metallurgical Laboratory CH-1459 (Feb. 29, 1944). - 6. H. M. PARKER: Medical Division: Metallurgical Laboratory CN-1892 (Sept. 1944). - 7. J. G. HAMILTON (quoted by N. Hilberry): Project Council Health Information Meeting: Metallurgical Laboratory CS-1329 (Feb. 1, 1944). - 8. J. J. NICKSON AND J. E. ROSE: Monthly health report on problems relating to product: Metallurgical Laboratory CN-2238 (Sept. 31, 1944). - 9. E. R. RUSSELL AND J. J. NICKSON: Distribution and excretion of plutonium: in *Industrial Medicine on the Plutonium Project* (R. S. Stone, editor), National Nuclear Energy Series, Division IV, Vol. 20, McGraw-Hill, New York, 256-263 (1951). - K. SCOTT,
H. FISHER, D. AXELROD, J. CROWLEY, A. J. BARBER, AND J. G. HAMILTON: Metabolism of plutonium in rats: Metallurgical Laboratory CN-2383 (Oct. 15, 1944). Declassified As MDDC-1018. Partially published under the same title in J. Biol. Chem. 176: 283-293 (1948). - 11. K. G. SCOTT, D. AXELROD, J. CROWLEY, AND J. G. HAMILTON: Deposition and fate of plutonium, uranium and their fission products inhaled as aerosols by rats and man: Arch. Pathol. 48:31-54 (1949). - 12. D. H. COPP, D. M. GREENBERG, J. G. HAMILTON, M. J. CHACE, L. VAN MIDDLESWORTH, E. M. CUTHBERTSON, AND D. J. AXELROD: The deposition of plutonium and certain fission products in bone as a decontamination problem: Metallurgical Laboratory CH-3591 (1946). Declassified as AECD -2483. - 13. R. H. SNYDER, R. D. FINKEL, L. O. JACOBSON, W. KISIELESKI, B. LAW-RENCE, AND E. L. SIMMONS: The toxicity and metabolism of plutonium in laboratory animals: Metallurgical Laboratory CH-3783 (Aug. 1946). Declassified as MDDC-1140. #### P. W. DURBIN - 14. E. PAINTER, AND G. SACI Metallurgics 2042. - 15. A. M. BRUES, substances w hattan Distr - 16. w. bloom: Sources: Na Graw-Hill, N - 17. R. ABRAMS, 1 POSTEL, AN: tonium in r. classified as ? - 18. w. h. Lang: Conference Laboratory (- 19. w. H. LANG! tribution and Scientific La? - 20. w. H. LANG isotopes from 318 (1956). - 21. w. H. LANG. analyses to t. Brit. J. Radic - 22. J. W. HEALY Am. Ind. Hys - 23. w. H. LANG: its industrial - 24. w. s. snyde: to estimate t Phys. 8:767-7 - 25. J. s. ROBERTS in man: Heal - 26. L. C. SCHWE: nuclear track tonium: Han. oject (R. S. 1V, Vol. 20, ical Labora- ical Labora- sory Report 11 CH-1459 ary CN-1892 : Health Inb. 1, 1944). problems reat. 31, 1944). tion of plu-R. S. Stone, :0, McGraw- R, AND J. G. Laboratory 13. Partially 293 (1948). Deposition inhaled as the deposicontamina-Declassified KI, B. LAWplutonium Aug. 1946). 14. E. PAINTER, E. RUSSELL, C. L. PROSSER, M. N. SWIFT, W. KISIELESKI, AND G. SACHER: Clinical physiology of dogs injected with plutonium: Metallurgical Laboratory CH-3858 (June 1946). Declassified as AECD-2042. 15. A. M. BRUES, H. LISCO, AND M. P. FINKEL: Carcinogenic action of some substances which may be a problem in certain future industries: Manhattan District Declassified Document MDDC-145 (July 1946). 16. W. BLOOM: Histopathology of Irradiation from External and Internal Sources: National Nuclear Energy Series, Division IV, Vol. 22-1, McGraw-Hill, New York (1948). 17. R. ABRAMS, H. C. SEIBERT, A. M. POTTS, L. L. FORKER, D. GREENBERG, S. POSTEL, AND W. LOHR: Metabolism and distribution of inhaled plutonium in rats: Metallurgical Laboratory CH-3655 (Oct. 1946). Declassified as MDDC-677. 18. W. H. LANGHAM AND E. R. RUSSELL: Excretion studies: in Report of Conference on Plutonium (J. J. Nickson, editor), Metallurgical Laboratory CN-3167 (July 1945). 19. W. H. LANGHAM, S. H. BASSETT, P. S. HARRIS, AND R. E. CARTER: Distribution and excretion of plutonium administered to man: Los Alamos Scientific Laboratory LA-1151 (Sept. 1950). 20. w. H. LANGHAM: Determination of internally deposited radio-active isotopes from excretion analysis: Am. Ind. Hyg. Assoc. Quart. 17:305-318 (1956). 21. W. H. LANGHAM: Excretion methods: The application of excretion analyses to the determination of body burden of radioactive isotopes: Brit. J. Radiol. Suppl. 7:95-113 (1957). 22. J. W. HEALY: Estimation of plutonium lung burden by urine analysis: Am. Ind. Hyg. Assoc. Quart. 18:261-266 (1957). 23. W. H. LANGHAM: Physiology and toxicology of plutonium-239 and its industrial medical control: Health Phys. 2:172-185 (1959). 24. w. s. snyder: Major sources of error in interpreting urinalysis data to estimate the body burden of Pu²³⁹: a preliminary study: Health Phys. 8:767-772 (1962). 25. J. S. ROBERTSON AND S. H. COHN: Evaluation of plutonium exposures in man: Health Phys. 10:373-389 (1964). 26. L. C. SCHWENDIMAN, J. W. HEALY, AND D. L. REID: The application of nuclear track emulsion to the analysis of urine for very low level plutonium: Hanford Laboratories HW-22680 (1951). - 27. G. H. COLEMAN: The radiochemistry of plutonium: Natl. Acad. Sci.-Natl. Res. Council NAS-NS-3058 (1965). - 28. B. J. STOVER, D. R. ATHERTON, AND N. KELLER: Metabolism of 239Pu in adult beagle dogs: Radiat. Res. 10:130-147 (1959). - Further studies of the metabolism of 235Pu in adult beagles: Health - 30. G. BOOCOCK AND D. S. POPPLEWELL: Distribution of plutonium in serum proteins following intravenous injection into rats: Nature 208:282-283 (1965). - 31. D. S. POPPLEWELL AND G. BOOCOCK: Distribution of some actinides in blood serum proteins: in Diagnosis and Treatment of Deposited Radionuclides (H. A. Kornberg and W. D. Norwood, editors), Excerpta Medica Foundation, Amsterdam, 45-55 (1967). - Pu(IV) with the iron transport system in human blood serum: Radiat. Res. 33:381-394 (1968). - 33. W. STEVENS, F. W. BRUENGER, AND B. J. STOVER: In vivo studies on the interactions of Pu(IV) with blood constituents: Radiat. Res. 33:490-500 (1968). - 34. J. H. KATZ AND J. H. JANDL: The role of transferrin in the transport editor), Springer-Verlag, Berlin, 103-117 (1964). - 35. J. H. KATZ: Transferrin and its functions in the regulation of iron metabolism: in Regulation of Haematopoiesis (A. S. Gordon, editor). Appleton-Century-Crofts, New York, 539-577 (1970). - 36. M. POLLYCOVE: Hemochromatosis: in The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, editors), McGraw Hill, New York, 780-810 (1966). - 37. M. POLLYCOVE AND R. MORTIMER: The quantitative determination of iron kinetics and hemoglobin synthesis in human subjects: J. Clin. Invest. 40:753-782 (1961). - 38. R. O. MCCLELLAN, H. W. GASEY, AND L. K. BUSTAD: Transfer of some transuranic elements to milk: Health Phys. 8:689-694 (1962). - 39. R. O. MCCLELLAN, H. W. CASEY, J. W. CABLE, AND L. K. BUSTAD: Transfer of heavy radionuclides to milk: Hanford Biology Research Annual Report HW-72500, 44-49 (1962). P. W. DL 40. w. TER. swii PLUTONIUM IN MAN: A NEW LOOK AT THE OLD DATA - Hai 41. L. I MCC obsc - 29. B. J. STOVER, D. R. ATHERTON, F. W. BRUENGER, AND D. S. BUSTER: Phys. 8:589-598 (1962). - 42. v. 19 tive Exp 43. L. A Rac - (19)44. w. Mo: U. S 45. w. 1 47, E. R hati - 32. B. J. STOVER, F. W. BRUENGER, AND W. STEVENS: The reaction of - 46. E. M toni- - of iron into the developing red cell: in Iron Metabolism (F. Gross, - plut (194)48. j. j Haz - Lab (Jai (Ma 211, - 49. E. R. mina Meta - 50. E. R. gical ERF - 51. E. R. gical MU Natl. Acad. Sci.- holism of 239 Pu Deagles: Health tonium in serum ure 208:282-283 orne actinides in opposited Radioitors), Excerpta The reaction of serum: Radiat. no studies on the in the transport olism (F. Gross, culation of iron Gordon, editor), sasis of Inherited S. Fredrickson, letermination of ets: J. Clin. In- transfer of some 1962). STAD: Transfer 40. W. J. CLARKE, J. R. MCKENNEY, V. G. HORSTMAN, L. J. SEIGNEUR, J. L. TERRY, AND L. K. BUSTAD: Plutonium metabolism in miniature swine: Hanford Biology Research Report, HW-59500, 54-60 (1959). - 41. L. K. BUSTAD, W. J. CLARKE, L. A. GEORGE II., V. G. HORSTMAN, R. O. MCCLELLAN, R. PERSING, L. J. SEIGNEUR, AND J. L. TERRY: Preliminary observations on metabolism and toxicity of plutonium in miniature swine: Health Phys. 8:615-620 (1962). - 42. v. h. smith, J. e. ballou, w. J. clarke, and R. c. thompson: Effectiveness of DTPA in removing plutonium from the pig: Proc. Soc. Exptl. Biol. Med. 107:120-123 (1961). - 43. L. A. BULDAKOV: The behavior of plutonium (239Pu) in young pigs: Radiobiologiya 8:1, 62-64 (1968). English translation AEC-tr-6950 (1968). - 44. W. H. LANGHAM, A. MURRAY III., A. M. PERLEY, AND R. W. MATTISON: Monitoring of certain personnel for internal plutonium contamination: U. S. Atomic Energy Commission Document AECD-4075 (1945). - 45. w. H. LANGHAM: Determination of plutonium in human urine: Manhattan District Declassified Document MDDC-1555 (1945). - 46. E. MAXWELL, R. FRYXELL, AND W. H. LANGHAM: Determination of plutonium in human feces: J. Biol. Chem. 172:185-190 (1948). - 47. E. R. RUSSELL AND J. J. NICKSON: The distribution and excretion of plutonium in two human subjects: Metallurgical Laboratory CH-3607 (1946). - 48. J. J. NICKSON, E. R. RUSSELL, AND J. E. ROSE: Medical Industrial Hazards Section and Biochemical Survey Section Reports, Metallurgical Laboratory (a) MUC-HG-1088 (May 1945), (b) MUC-HG-1187 (Jan. 1946), (c) MUC-HG-1194 (Feb. 1946), (d) MUC-HG-1203 (Mar.-Apr. 1946), (e) MUC-ERR-206 (May 1946), (f) MUC-ERR-211, (June 1946). - 49. E. R. RUSSELL, J. SCHUBERT AND J. A. JACKSON: The quantitative determination of plutonium in biological materials. I. The analysis of urine: Metallurgical Laboratory MUC-HG-1217 (June 1946). - 50. E. R. RUSSELL: The quantitative determination of plutonium in biological materials. II. Analysis of stools: Metallurgical Laboratory MUC-ERR-210 (June 1946). - 51. E. R. RUSSELL: The quantitative determination of plutonium in biological materials. III. The analysis of tissues: Metallurgical Laboratory MUC-HG-1218 (June 1946). Moskalev, editors), Mc P. W. DURBIN Air Force FID-TT-63-64. P. W. DURBIN: Pluto Berkeley Laboratory, U - 65. E. BISCHOFF: Einige G des menschlichen Körp - 66. E. DURSY: Lehrbuch & isch Verbundener Lc schaften (C. H. Schi & C., Lahr, 507-511 (1 - 67. A. W. VOLKMANN: I Knochen: Ber. Sächs. - 68. H. H. MITCHELL, T. S The chemical compos the biochemistry of g - 69. R. M. FORBES, A. R. C. the adult human be Chem. 203:359-366 - 70. R. M. FORBES, H. H. the gross composition J. Biol. Chem. 223:96 - 71. A. N. MAREI AND B. K tent in adults: Stat published). (Copies bin on request). - 72. D. R. ATHERTON, C. Y tion in adult beagle tory COO-217, 118- - 73. R. D. LLOYD, D. R. A. tribution of injected biology, University - 74. P. W. DURBIN, M. W. ASLING, AND J. G. 1 the rhesus monkey (Hazards of a Fallow Supt. of Document D.C. 173-184 (1950 - 52. J. CROWLEY, H. LANZ, K. SCOTT, AND J. G. HAMILTON: A
comparison of the metabolism of jutonium (Pu238) in man and the rat: Metallurgical Laboratory Cl 89 (Sept. 1946). - 53. H. FOREMAN, W. MOSS, AND W. LANGHAM: Plutonium accumulation from long-term occupational exposure: Health Phys. 2:236-333 (1960). - 54. T. N. RYSINA AND R. A. EROKHIN: The distribution and elimination of plutonium in pigs in the long-term periods after introduction: in Biological Effects of Radiation and Problems of Radioactive Isotope Distribution (A. V. Lebedinskii and Yu. I. Moskalev, editors), Medgiz, Moscow (1961). English translation AEC-tr-5265, 117-126. - 55. B. J. STOVER, D. R. ATHERTON, F. W. BRUENGER, AND DAWN S. BUSTER: Plutonium-239 in liver, spleen and kidneys of the beagle: Health Phys. 14:193-197 (1968). - 56. B. J. STOVER, D. R. ATHERTON, F. W. BRUENGER, AND DAWN S. BUSTER: 239 Pu(IV): its distribution in the beagle: in Delayed Effects of Bone-Seeking Radionuclides (C. W. Mays et al., editors), University of Utah Press, Salt Lake City, 109-123 (1969). - 57. J. CARRITT, R. FRYXELL, J. KLEINSCHMIDT, R. KLEINSCHMIDT, W. LANG-HAM, A. SAN PIETRO, R. SCHAFFER, AND B. SCHNAP: The distribution and excretion of plutonium administered intravenously to the rat: J. Biol. Chem. 171:273-283 (1947). - 58. J. SCHUBERT, M. P. FINKEL, M. R. WHITE, AND G. M. HIRSCH: Plutonium and yttrium content of the blood, liver, and skeleton of the rat at different times after intravenous administration: J. Biol. Chem. 182:635-642 (1950). - 59. International Commission on Radiological Protection Report of Committee II on Permissible Dose for Internal Radiation: Health Phys. 3:15 (1959). - 60. International Commission on Radiological Protection Task Group Report on Standard Man (in preparation). - 61. N. MECHANIK: Untersuchungen über des Gewicht des Knochenmarkes des Menschen: Z. Anat. Entwick.-Gesch. 79:58-99 (1926). English translation NIH-tr-2-13-67, 67.2106. - 62. D. M. TAYLOR, F. D. SOWBY, AND N. F. KEMBER: The metabolism of americium and plutonium in the rat: Phys. Med. Biol. 6:73-86 (1961). - 63. YU. A. BELYAYEV, V. V. KONSTANTINOVA, AND N. I. YELKINA: Plutonium distribution in rabbits: in Plutonium-239: Its Distribution, Biological Effects and Accelerated Elimination (A. V. Lebedinskii and Yu. I. Secretaria separation of the second veomparison rat: Metal- cumulation -333 (1960). finination of eduction: in tive Isotope ms), Medgiz, s. BUSTER: Health Phys. s. BUSTER: ts of Bone- distribution the rat: J. : Plutonium tut at differ-182:635-642 ort of Com-Phys. 3:15 : Group Re- Knochen--99 (1926). -abolism of -86 (1961). : Plutonium i. Biological and Yu. I. Moskalev, editors), Mediz, Moscow (1962). English Translation U. S. Air Force FID-TT-63-559, Dept. Defense AD-430440, 1-7 (1963). - 64. P. W. DURBIN: Plutonium in man 1 5-year review: Lawrence Berkeley Laboratory, UCRL-20850 (1971). - 65. E. BISCHOFF: Einige Gewichts und Trocken-Bestimmungen der Organe des menschlichen Körpers: Z. Rat Med. 20:75-118 (1863). - 66. E. DURSY: Lehrbuch der Systematischen Anatomie: in Cyclus Organisch Verbundener Lehrbücher Sämmtlicher Medicinischem Wissenschaften (C. H. Schauenberg, editor), Verlag von M. Schauenberg & C., Lahr, 507-511 (1863). - 67. A. W. VOLKMANN: Über die relativen Gewichte der menschlichen Knochen: Ber. Sächs. Gesell. Wissen. Math-Phys. 25:267-305 (1873). - 68. H. H. MITCHELL, T. S. HAMILTON, F. R. STEGGERDA, AND H. W. BEAN: The chemical composition of the adult human body and its bearing on the biochemistry of growth: J. Biol. Chem. 158:625-637 (1945). - 69. R. M. FORBES, A. R. COOPER, AND H. H. MITCHELL: The composition of the adult human body as determined by chemical analysis: J. Biol. Chem. 203:359-366 (1954). - 70. R. M. FORBES, H. H. MITCHELL, AND A. R. COOPER: Further studies on the gross composition and mineral elements of the adult human body: J. Biol. Chem. 223:969-975 (1956). - 71. A. N. MAREI AND B. K. BORISOV: Methods of mass survey of the Sr³⁰ content in adults: State Commission for Atomic Energy, Moscow (unpublished). (Copies of English translation available from P. W. Durbin on request). - 72. D. R. ATHERTON, C. W. MAYS, AND B. J. STOVER: Radionuclide distribution in adult beagle bones: University of Utah Radiobiology Laboratory COO-217, 118-125 (1958). - 73. R. D. LLOYD, D. R. ATHERTON, SUSAN S. GAUFIN AND C. W. MAYS: Distribution of injected ²⁴¹Am in the beagle skeleton: Research in Radio-biology, University of Utah COO-119-244, 151-158 (1971). - 74. P. W. DURBIN, M. W. PARROTT, M. H. WILLIAMS, M. E. JOHNSTON, C. W. ASLING, AND J. G. HAMILTON: Metabolic studies with strontium-90 in the rhesus monkey (preliminary report): in *The Shorter-term Biological Hazards of a Fallout Field* (G. M. Dunning and J. A. Hilcken, editors), Supt. of Documents, U. S. Government Printing Office, Washington, D.C. 173-184 (1956). - 75. R. D. EVANS: Measurements on whole bone radium and mesothorium activities: Radium and Mesothorium Poisoning Project Annual Report MIT-952-2, 26-31 (1965). - 76. R. D. EVANS: Measurement of macroscopic variations in the skeletal distribution of radium and mesothorium: Radium and Mesothorium Poisoning Project Annual Progress Report MIT-952-4, 34-36 (1967). - 77. J. L. KULP AND A. R. SCHULERT: Sr⁹⁰ in man and his environment. II. Analytical data. Table II-4. Intraskeletal distribution of Sr⁹⁰: Lamont Geological Observatory NYO-9934, 219-22 (1961). - 78. R. E. ROWLAND: Exchangeable bone calcium: Clin. Orthop. 49:233-248 (1966). - 79. L. VAN MIDDLESWORTH: Study of plutonium metabolism in bone: Doctoral dissertation, Physiology, University of California, Berkeley, (1947). (Also issued as MDDC-1022, 1947). - 80. J. H. DOUGHERTY AND K. SEYMOUR: Hematology report: hematological values for 188 adult beagles: University of Utah Radiobiology Laboratory AECU-3522, 57-65 (1957). - 81. G. A. TURNER AND D. M. TAYLOR: The transport of plutonium, americium and curium in the blood of rats: Phys. Med. Biol. 13:535-546 (1968). - 82. w. H. CROSBY: Regulation of iron metabolism: in Regulation of Hematopoiesis (A. S. Gordon, editor), Appleton-Century-Crofts, New York, 519-537 (1970). - 83. M. J. MORONEY: Facts from Figures, Penguin Books, Harmondsworth, Middlesex (1951). - 84. T. H. BOTHWELL AND C. A. FINCH: Iron Metabolism, Little-Brown & Co., Boston (1962). - 85. R. DUBACH, C. V. MOORE, AND S. CALLENDER: Studies in iron transportation metabolism. IX: The excretion of iron as measured by the isotope technique: J. Lab. Clin. Med. 45:599-615 (1955). - 86. F. W. BRUENGER: Discussion following paper by Stover et al., ref. 56, 122-23. - 87. C. R. LAGERQUIST, E. A. PUTZIER, AND C. W. PILTINGSRUD: Bio-assay and body counter results for the first two years following an acute plutonium exposure. Health Phys. 13:965-972 (1967). - 88. C. V. MOORE AND R. DUBACH: Iron: in Mineral Metabolism Vol. 2B (C. L. Comar and F. Bronner, editors), Academic Press, New York, 287-348 (1962). P. W. DURE - 89. R. GRE C. FIN - 90. c. 11. Physic Willia 45:33 - 91. Ibid., large: - 92. Ibid., - 93. B. J. S in the - 94. w. s. of ²³⁹ Unive - 95. B. J. spleni 374 (- 96. G. N. STER: biolog - 97. c. n. tion c Abstra - 98. B. J. tribut Resea (1970 - 99. н. н. tetrac - 100. J. L. 1 IV: S - 101. F. J. F stront: AERI - 102. R. E. F (H. F nesothorium Annual Re- the skeletal lesothorium 1-36 (1967). ronment. II. юр. 49:233- bone: Doccley, (1947). ematological logy Labora- a. americium546 (1968). on of Hema-New York, mondsworth, ::le-Brown & ** transporta** the isotope 1 al., ref. 56, Bio-assay and are plutonium dism Vol. 2B . New York, 89. R. GREEN, R. CHARLTON, H. SEFTEL, T. BOTHWELL, F. MAYET, B. ADAMS, C. FINCH, AND M. LAYRISSE: Body iron exerction in man: Am. J. Med. 45:336-353 (1968). 90. C. II. BEST AND B. TAYLOR: Pancreas, liver and biliary system: in The Physiological Basis of Medical Practice, 7th Edition, Ch. 39, The Williams and Wilkins Co., Baltimore, 629-664 (1961). 91. Ibid., Ch 42. Movement of the alimentary canal, continued. Small and large intestines, p. 719. 92. Ibid., Ch. 40. Secretion and absorption in the intestine, 665-681. 93. B. J. STOVER, D. R. ATHERTON, AND D. S. BUSTER: Retention of ²³⁹Pu(IV) in the beagle: This volume. 94. w. s. s. JEE, H. Z. PARK, AND R. BURGGRAFF: Estimates of residence time of ²³⁹Pu in trabecular bones of beagles: Research in Radiobiology, University of Utah COO-119-240, 188-197 (1969). 95. B. J. STOVER, D. R. ATHERTON, AND D. S. BUSTER: Protracted hepatic,, splenic and renal retention of ²³⁹Pu in the beagle: Health Phys. 20:369-374 (1971). 96. G. N. TAYLOR, W. S. S. JEE, N. L. DOCKUM, E. HROMYK, AND L. BREW-STER: Translocation of Pu²³⁹ in beagle livers: Research in Radiobiology, University of Utah COO-119-234, 70-84. (1966). 97. G. N. TAYLOR, W. S. S. JEE, N. L. DOCKUM, AND E. HROMYK: Translocation of ²³⁹Pu and ²⁴¹Am in beagle livers: Radiat. Res. 31:554 (1967) Abstract. 98. B. J. STOVER, F. W. BRUENGER, AND W. STEVENS: The subcellular distribution of plutonium in the liver and its association with ferritin: Research in Radiobiology, University of Utah COO-119-144, 131-144 (1970). 99. H. H. FROST: Measurement of human bone formation by means of tetracycline labelling: Can. J. Biochem. Physiol. 41:31-42 (1963). 100. j. l. kulp, A. R. schulert, and E. J. Hodges: Strontium-90 in Man. IV: Science 132:448-454 (1960). 101. F. J. BRYANT AND J. L. LOUTIT: Human bone metabolism deduced from strontium assays: Atomic Energy Research Establishment, Harwell, AERE-R-3718 (1961). 102. R. E. ROWLAND: Resorption and bone physiology: in Bone Biodynamics (H. H. Frost, editor), Little-Brown and Co., Boston, 335-351 (1964). - 103. H. A. MAY: Preliminary report on the distribution of americium-241 following accidental inhalation: Argonne National Laboratory, Radiological Physics Division Annual Report ANL-7489, 19-23 (1968). - 104. C. E. MILLER, AND A. J. FINKEL: A re-examination of retention patterns in patients who received radium by multiple injections 33 years earlier: Health Division Gamma-Ray Spectroscopy
Group Annual Report ANL-7217, 5-90 (1965). - 105. P. W. DURBIN, N. JEUNG, AND M. H. WILLIAMS: Dynamics of 241 Am in the skeleton of the rat. A study of the relationship between behavior of bone-seeking elements and bone-growth status: in Delayed Effects of Bone Seeking Radionuclides (C. W. Mays et al., editors), University of Utah Press, Salt Lake City, 137-156 (1969). - 106. C. W. MAYS, C. S. TAYLOR, W. S. JEE, AND T. F. DOUGHERTY: Speculated risk to bone and liver from ²²⁹Pu: Health Phys. 19:601-610 (1970). - 107. M. MÜHLMANN: Wachstum, Altern, und Tod. Über die Ursache des Alterns und des Tods: Virchow's Erg. Anat. 27:1-245 (1927). - 108. L. M. BAYER AND N. BAYLEY: Growth Diagnosis. Selected Methods for Interpreting Physical Development from One Year to Maturity: Univ. Chicago Press, Chicago (1956). - 109. F. W. THEILE: Gewichtsbestimmungen zur Entwicklung des Muskelsystems und des Skelettes beim Menschen. II. Das Skelett: Nova Acta Ksl.-Leop.-Carol.-Deut., Halle, Akad. Naturforsch. 46: No. 3, 437-471 (1884). - 110. J. C. NÉNOT, R. MASSE, M. MORIN, AND J. LAFUMA: An experimental comparative study of the behavior of 237Np, 238Pu, 239Pu, 241Am, and ²⁴²Cm in bone: in Symposium on the Biological Implications of the Transuranium Elements, Richland, Washington, Sept. 26-29, 1971. Health Phys. (in press). - 111. P. W. DURBIN, M. W. HOROVITZ AND E. R. CLOSE: Plutonium deposition kinetics in the rat: in Symposium on the Biological Implications of the Transuranium Elements, Richland, Washington, Sept. 26-29, 1971. Health Phys. (in press). ## U.S. **PROG** ## INTROL Since tremely us: position as to the hur in the use sent transu new cleme In anticip. ever awar program o environme National I Commissio mental Ho The name Registry to original tis tonium. S similar reg covered th and expect · Hanfe Supp PLUTONIUM IN THE EXCRETA OF THREE SUBJECTS 10⁴ DAYS AFTER INJECTION ANL-75-3 Part II Biology and Medicine UC-48 BY J. RUNDO, P.M. STARZYK, J. SEDLET, R.P. LARSEN, R.D. OLDHAM, AND J.J. ROBINSON ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 # RADIOLOGICAL AND ENVIRONMENTAL RESEARCH DIVISION ANNUAL REPORT Center for Human Radiobiology July 1973 through June 1974 R. E. Rowland, Division Director A. F. Stehney, Section Head Follow-up studies of 3 hamon injection-study subjects. Preceding Report: ANL-8060, Part I July 1973. This document will be which into the system. 1050223 LANL و ميه PLUTONIUM IN THE EXCRETA OF THREE SUBJECTS 10 4 DAYS AFTER INJECTION J. Rundo, P. M. Starzyk, J. Sedlet,* R. P. Larsen, R. D. Oldham, and J. J. Robinson* Substantial amounts of 239 Pu were found in the daily excreta of two subjects who had been injected intravenously with plutonium citrate (239 Pu) 104 days previously. The urine of a third subject injected intramuscularly with 238 Pu contained just measurable amounts of this nuclide. ## Introduction Three persons who had received injections of plutonium in 1945–1947 were hospitalized on a metabolic ward in 1973. Complete collections of urine and feces were made for periods of 8 to 14 days, and these excreta were shipped to ANL for plutonium analysis. Two of the individuals received intravenous injections of about 0.3 μ Ci of plutonium (IV) citrate; the third individual received an intramuscular injection of 0.095 μ Ci of plutonium (VI) nitrate. The intravenous injections were of 239 Pu, while the intramuscular injection was of 238 Pu. The intramuscular injection was made in the gastrocnemius muscle of a leg having a bone sarcoma: four days after the injection, the leg was amputated. Analysis of a 69-g sample of tissue from what was described as the "injection site" showed that it contained 0.044 μ Ci. Because of the possibility that tissue adjacent to the "injection site" also contained unabsorbed plutonium, it is impossible to establish an accurate value for the initial systemic burden. This report is confined to the description of the methods used for the analyses of these unique and important samples, together with the results. Interpretation will be presented elsewhere. For a description of the early experiments and their results, the reader is referred to the extensive review prepared by Durbin. (1) Some pertinent details of the three subjects are set out in Table 1. ^{*}Occupational Health and Safety Division. TABLE 1. Some Details of the Three Subjects Who Survived Their Primary Diseases. | CHR
case No. | Literature ^(a)
case No. | Sex | Original diagnosis | Age in
1973, yr | Amount injected, µCi | |-----------------|---------------------------------------|-----|--|--------------------|----------------------------| | 40-003 | Cal-3 | м | Osteo-fibro myxochondrosarcoma | 62 | 0.095 (²³⁸ Pu) | | 40-009 | Hp-3 | F | Hepatitis, dermatitis, hypoproteinemia | 77 | 0.301 (²³⁹ Pu) | | 40-012 | Hp-6 | M | Addison's disease | 72 | 0.331 (²³⁹ Pu) | ⁽a) Literature case numbers are those in Reference 1. ## Urine: Sample Treatment, Aliquoting, and Analysis During each 24-hr collection period the individual urine specimens were transferred to a polyethylene bottle; at the end of the collection period the urine was frozen. The samples were shipped to ANL and kept frozen until they were aliquoted. To aliquot a 24-hr urine specimen, it was thawed and transferred, along with several concentrated nitric acid washes of the original container, to a tared mixing cylinder. The amount of nitric acid used was such that the final acidity of the urine was about 2.0 N. After the urine had been mixed with the acid and the mixing cylinder reweighed, the solution was apportioned about equally to 12 tared polyethylene bottles. The bottles were then retared and their contents frozen. These portions were individually analyzed; the fraction factor for each portion was calculated from the weight of each portion and the total weight of acidified urine. The plutonium content of the urine was determined by alpha spectrometric-isotope dilution analysis using ²⁴²Pu as the spike isotope. The aliquot was thawed, the ²⁴²Pu spike was added, the urine was transferred, along with nitric acid washes of the container, to an erlenmeyer flask and the urine was wet-ashed. The ashing was considered to be complete if the salt residue was white when evaporation was carried to dryness. The salts were then dissolved in 2 N nitric acid. The plutonium was separated from the other inorganic constituents of the urine by first coprecipitating it with cerous fluoride and then subjecting it to an anion exchange separation procedure. Hydroxylamine was added to the nitric acid solution, the solution was heated to reduce the plutonium to the trivalent state, cerous nitrate was added, and cerous fluoride was precipitated by the addition of hydrofluoric acid. After separation of the cerous fluoride by centrifugation, it was dissolved by heating with 8 N nitric acid that had been saturated with aluminum nitrate. This solution was passed through a column of Dowex 1 × 8, and the column was washed, first with 8 N nitric acid and then with 12 N hydrochloric acid. The plutonium was eluted from the column with 0.1 N hydrochloric acid-0.01 N hydrofluoric acid. The plutonium was transferred from solution to the surface of a polished stainless steel planchet for alpha spectrometric assay by an electrodeposition procedure. Sulfuric acid was added to the eluant solution, the solution was evaporated to fumes of sulfuric acid, diluted with water, and neutralized with ammonia gas to a pH of 2.0. The electrodeposition was carried out for 1.5 hr at 1.2 amp. The planchets were counted until about 300 counts had been accumulated in the ²³⁹Pu peak. The amounts of activity in the aliquots ranged from about 0.3 pCi to 0.75 pCi; the counting efficiency was about 35%. The alpha spectrograms ranged in quality from good to excellent, a "good spectrum" being defined as one in which the FWHM of the ²⁴²Pu peak is 0.12 MeV and an "excellent spectrum" as one in which the FWHM is the same as that obtained in the electrodeposition of standards, i.e., 0.06 MeV. As the analysis of several aliquots of the urine from case 40-003 showed that there was too little plutonium for measurement, the aliquots that had been made from each of three 24-hr collection periods were recombined and analyzed. In the alpha spectrograms, integration of the 238 Pu peak at 5.48 MeV was impeded by the presence of a peak at 5.43 MeV. The radionuclide producing this peak was identified as 228 Th. By counting the plates after 3.62-day 224 Ra had reached secular equilibrium with its 228 Th parent and integrating the counts in the 224 Ra peak at 5.68 MeV, we could calculate the 228 Th contribution to the 228 Th—238 Pu peak. This contribution ranged from 20° to 25% of the total. It was subsequently established that 228 Th as well as 230 Th and 232 Th were present in the reagents. The hydrochloric acid wash of the anion exchange column, although extensive, had not been sufficient to wash all the thorium away from the plutonium. ## Feces: Sample Treatment and Analysis At the time the fecal samples were obtained they were bagged and frozen. They were kept in this condition until the time of analysis. To prepare the samples for analysis, they were thawed, the ²⁴²Pu spike was added, and the organic matter destroyed by first dry-ashing them for 16 hr at 500°C and then wet-ashing by repeated additions of nitric acid and evaporation to dryness. When the residues from the nitric acid treatment were judged by their appearance to contain no residual organic material, they were dissolved by adding concentrated hydrochloric acid and heating to 80°C. These solutions were analyzed by the radiochemical procedure described above for the urine samples. For 22 of the 24 samples analyzed, the ²⁴²Pu recovery ranged from 66 to 100%. Although the recoveries in two of the analyses were only 10%, the ²³⁹Pu excretion rates obtained did not appear to be
significantly different from the rates obtained where the recoveries of ²⁴²Pu were much higher. From this it is inferred that isotopic exchange between the ²³⁹Pu and ²⁴²Pu had been established in all the samples during the operations used to destroy the organic material. ## Results To establish the precision of the analysis three aliquots from each of three urine samples were analyzed, and the values were compared. In each comparison all values were within the 95% confidence limits calculated from the average value and the number of counts in the ²³⁹Pu peak. The amounts excreted in the 24-hr urine samples are summarized in Table 2, while the results for the fecal samples are given in Table 3. One aspect of the entries in these tables calls for comment. For cases 40-009 and 40-012 the statistical errors on the results in Table 3 are all substantially lower than on those in Table 2, yet the numbers are lower in Table 3. This is because only small aliquots (5-10%) of the 24-hr urine samples were analyzed, 1050227 while the whole of each fecal sample was assayed. Day-to-day variations in the urinary output of plutonium-239 were comparatively small; the ratio of highest to lowest daily output was 1.48 for case 40-009 and 1.36 for case 40-012. There were much larger sample-to-sample variations in the fecal output. The number of days of excretion represented by the sample was determined by identifying the beginning and end of each of two periods when a carmine dye appeared in the stool. For case 40-012 the results for the two periods were in complete agreement, and the daily fecal excretion was 38% of the mean daily urinary excretion. The results for case 40-009 were not so straightforward; the mean daily fecal excretion was substantially higher in the first period than in the second period, and a sample voided just before the start of the first period contained a remarkably large TABLE 2. Plutonium in the 24-hr Urine Samples. | - | | | | |-----------------------------|---|----------------------|-----------------| | | | ontent of urine samp | oles, pCi/day | | Day | Case 40-003 ^(a)
(238 _{Pu)} | Case 40-009 | Case 40-012 | | 1 | - | 6.50 ± 0.24 | 4.62 ± 0.25 | | 2 | - | 9.00 ± 0.34 | 3.94 ± 0.28 | | 3 | - | 8.23 ± 0.21 | 4.56 ± 0.26 | | 4 | - | 7.91 ± 0.25 | 5.33 ± 0.26 | | 5 | 0.062 ± 0.005 | 7.63 ± 0.54 | 4.42 ± 0.32 | | 6 | - | 7.72 ± 0.37 | 4.90 • 0.28 | | 7 | - | 7.47 ± 0.39 | 5.35 • 0.34 | | 8 | - | 7.38 ± 0.38 | 4.46 ± 0.25 | | 9 | 0.059 ± 0.005 | 6.59 ± 0.34 | | | 10 | 0.055 ± 0.010 | 7.37 ± 0.47 | | | 11 | - | 8.41 ± 0.49 | | | 12 | | 7.77 ± 0.38 | | | 13 | | 6.09 ± 0.43 | | | 14 | | 8.05 ± 0.39 | | | Weighted
mean | | | | | ± S.E. | 0.060 ± 0.003 | 7.60 ± 0.21 | 4.68 ± 0.17 | | Time
since
injection, | | | | | days | 9474 | 9934 | 10,008 | | | | | | ⁽a) Small aliquots did not provide sufficient 238 Pu for analysis of samples from case 40-003; only 3 of the 11 samples were analyzed in toto. amount of plutonium (sample 2, Table 3). This patient had been suffering from diverticulitis with paralytic ileus which ended the day before sample 1 was collected. It seems likely that the high excretion rate of plutonium just prior to and during part of the first marker period reflected the voiding of feces containing plutonium which had continued to be secreted into the gastrointestinal tract during the period of constipation. The mean daily excretion during the second period may thus be our best estimate of the true fecal elimination rate: it was 42% of the mean daily TABLE 3. Plutonium in the Fecal Samples from the Two Patients Who Received 239 Pu | | | hts and plutonium | | - | | |---------|---------------|-------------------|----------------------------|---------------------------------------|--| | Sample | Case 40 | | Case 40-012 ^(a) | | | | No. | Wet weight, g | pCi | Wet weight, g | pCi | | | 1 | 20 | 1.94 ± 0.06 | 33.5 | 0.43 ± 0.02 | | | 2 | 222 | 18.7 ± 0.4 | 50.5 | 0.77 ± 0.03 | | | 3 | 135.5 | 9.18 ± 0.30 | 178.5 | 1.87 ± 0.06 | | | 4 | 75 | 2.92 • 0.11 | 217 | 2.09 ± 0.08 | | | 5 | 167 | 4.96 ± 0.16 | 269.5 ^(b) | 1.46 ± 0.08 | | | 6 | 161.5 | 6.27 ± 0.10 | 90 (p) | 0.91 ± 0.06 | | | 7 | 95.5 | 2.79 ± 0.11 | 98 | 2.21 ± 0.09 | | | 8 | 170 | 3.90 ± 0.10 | 53 | 0.85 ± 0.03 | | | 9 | 94.5 | 3.10 0.15 | 125 | 1.72 • 0.06 | | | 10 | 83 | 2.51 0.08 | 132.5 | 2.29 ± 0.10 | | | 11 | 324 | 7.34 ± 0.50 | | · · · · · · · · · · · · · · · · · · · | | | 12 | 54 | 2.18 ± 0.10 | | | | | 13 | 143 | 3.30 ± 0.10 | | • | | | 14 | 53.5 | 1.35 ± 0.08 | | | | | Mean fo | or period I | 5.22 pCi/d (5 d | ays) | 1.78 pCi/day (4 days) | | | Mean fo | or period II | 3.17 pCi/d (6 d | ays) | 1.77 pCi/day (4 days) | | ⁽a) The horizontal lines indicate the starts and stops of time periods defined by the appearance of a dye marker in the stool. urinary excretion. This is similar to the result for case 40-012. Because of the importance of these analyses, large numbers of aliquots of the urine samples were analyzed by two of us independently, and also by the Bio-Analytical and Chemical Section of the Industrial Hygiene Group at the Los Alamos Scientific Laboratory. With only two exceptions all the values from the aliquots of one 24-hr urine sample agreed within the statistics of counting. The averages of the three sets of values also agreed within this limit. #### Reference Durbin, P. W. Plutonium in man: A new look at the old data. in <u>Radio-biology</u> of Plutonium, Ed. B. J. Stover and W. S. S. Jee. The J. W. Press, Salt Lake City, pp. 469-530, 1972. ⁽b) Combinations of 2 or 3 smaller samples voided at short intervals.